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Abstract 

 The composite materials in magnetorheological elastomer (intelligent material) possess 

mechanical properties important. These materials are incorporated into mechanical structures 

such that the beams, plates and shells, these structures sandwiches in MRE are recently used 

in many industrial sectors because of their high flexural stiffness accompanied by strong 

energy dissipation. In this work we studied the static behavior of beam composed of a core in 

elastomer magnetorheological inserted between two skins in aluminum. To well understand 

the behavior of these structures there has developed a digital approach by the method of Ritz 

as well as a simulation by MEF under the Code of calculation ABAQUS, the results found are 

well face.  

 Keywords: magnetorheological elastomer, viscoelastic, sandwich beams, FEM 

Résumé  

Les matériaux composites en élastomère magnétorhéologique (matériau intelligent) possèdent 

des propriétés mécaniques importantes. Ces matériaux sont incorporés dans structures 

mécaniques tels que les poutres, les plaques et les coques, ces structures sandwiches en MRE 

sont récemment utilisées dans des nombreux secteurs industriels à cause de leur haute rigidité 

en flexion accompagnée d'une forte dissipation d'énergie. Dans ce travail on a étudié le 

comportement statique d'une poutre composée d’un core en élastomère magnétorhéologique 

inséré entre deux peaux en aluminium. Pour comprendre bien le comportement de ces 

structures on a développé une approche numérique par la méthode de Ritz ainsi que une 

simulation par MEF sous le code de calcul Abaqus, les résultats trouvés sont bien confrontés. 

 Mots clés Elastomère, Viscoélastique, Poutre sandwich, MEF  

  الΨϠϤص

هϩά الϤواΩ قد اέΩجت .تϤتϠك الΨصΎئص الϤيكΎنيكيΔ هΎمΔ( الϤواΩ الάكيΔ)ي الϤغΎϨطيسي الϤواΩ الϤركΔΒ في الϤطΎط الصΎϨع 

ΕΎمΎل الدعΜم ΔنيكيΎيكϤكل الΎيϬئح, في الΎكل, الصفΎيϬل مؤخراً , الϤط تستعϨغϤϤطي الΎطϤال ΝزϠال ΕΎϘΒكل من طΎيϬال ϩάه

هάا العϤل نϘوϡ بدέاسΔ سكوϥ  في .صιΎ الطΎقΔفي العديد من الϘطΎعΕΎ بسΒب الصلابΔ العΎليΔ مصحوبΎ بέΎتفΎع في امت

ϡيوϨϤϤتين من الالϘΒط ϭ طϨغϤϤطي الΎطϤال ΝزϠال ΔϘΒلف من طΎتت Γطيرθج . الϬكل تم تطوير نΎيϬال ϩάه ϙوϠيد لسΠم الϬلف ϭ

 ΔϘي لطريϤالرق(يتزέ )الكάك ϭ   Δبواسط(ϡ ع ط )ΏΎحس ϥنوΎتحت ق ABAQUS ΔϬبΎθمت ΎϬيϠع ΎϨϠئج التي حصΎتϨال ϭ.   

ΕΎϤϠالك ΡΎط:  مفتϨغϤطي مΎمط Νمع, لز ΔمΎعΩ Γطيرθال, ϡ ط ع 
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Nomenclature 

Symbol                                                  Name  

ı (t)                                                        stress  

ε (t)                                                         strain 

G (t)                                                        Shear relaxation modulus  

C (t)                                                        creep compliance of the viscoelastic material   

G                                                           Equilibrium modulus 

iG                                                            Relaxation strength  

i                                                             Relaxation time  

gC                                                           Glassy compliance  

iC                                                            Retardation strength  

i                                                             Retardation time 

)(' G                                                      Storage function    

)('' G                                                      Loss function 

 tCcrp
                                                     Creep relaxation 

)(tErel                                                      Relaxation relation  

Ĳ                                                              Shear stress 

                                                              Shear strain 

G                                                             Shear modulus 

η                                                              Viscosity  

ω                                                              Angular velocity  

f                                                               Frequency   

0

iu                                                             Longitudinal displacement of the top layer  

iz                                                              Distance from centroid of top layer  

iw                                                             Transverse displacement in the top layer  
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0

iw                                                            Transverse displacement at the centroid of the top and 

bottom layer  

2u                                                             Longitudinal displacement in the MRE  

0

2u                                                             Longitudinal displacement at the centroid of the MRE  

                                                             Shear deformation in MER core    

                                                             Transverse normal deformation in MER core  

h                                                              Thickness of the beam 

L                                                              Length of the beam  

U                                                              Displacement  

1 ... n                                                      Shape functions  

1C ... nC                                                     Coefficients of shape functions  

ijm                                                           Matrix mass  

ijK                                                            Stiffness matrix 

1
K                                                          The inveres stiffness matrix  

)(
*

tG                                                        Complex module  

G                                                             The real part (module of conservation)  

G                                                             The imaginary part (module of dissipation) 

 E                                                              Elastic modulus  

                                                               Poisson’s coefficient  

B                                                               intensity of magnetic field 
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                                            General introduction 

   In order to improve the mechanical characteristics of the structures and the guard of the fatigue 

and the early break, it is essential to controls within their Mechanical properties and vibratory 

behavior. The importance of constructions (nuclear centrals, space structures …) is continuously 

increasing because of developing technology. Materials are generally accepted as elastic in 

engineering constructions due to calculation simplicity, but, used materials actually demonstrate 

a viscoelastic behavior, so, models which give the actual behavior of material with more time 

consuming computing capacity should be used for more precise determination of behavior of 

materials used in constructions, this requires vescoelastic material assumptions instead of the use 

of elastic material assumptions. Under normal conditions, in metals, the modulus of elasticity can 

be modeled as a constant, that is, the modulus of elasticity is not treated as a function of 

frequency in dynamic models [1]. 

   Magneto-rheological (MR) materials exhibit rapid variations in their rheological properties 

such as viscosity and shear modulus when subjected to different magnetic field intensities. Since 

is it discovery by Rabinow in 1948. Magnetorheological materials have developed into a family 

with Magneto-rheological fluid, Magneto-rheological foam and Magneto-rheological elastomer 

[2]. The most common Magneto-rheological material is Magneto-rheological fluid (MRF). The 

general criterion to estimate the MR effect of MRF is the variation capability of dynamic yield 

stress within a post-yield regime under external applied magnetic field. A lot of applications 

based on MRF benefit from the properties that the dynamic yield stress can be continuously, 

rapidly and reversibly controlled by the applied magnetic field. 

For viscoelastic materials, the modulus of elasticity can be assumed to be constant for static 

forces and variable forcing function, however, when viscoelastic materials undergo excitations 

from a random or transient forcing function the constant modulus of elasticity assumption may 

not be valid, this is because the second order equation of motion has non-constant coefficient that 

vary as a function of Mechanical properties Where the stress and strain of the plate are calculated 

by the finite element method. ZG Ying and al [3] studied forced of a magnetorheological 

elastomer sandwich by a random excitation plate where the responses of the plate are determined 

by the Galerkin method it has been observed from the available literature that though many 

works have been reported on the deformation analysis of MRE embedded viscoelastic cored 
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sandwich beam simply supported, similarly, many researchers studied the parametric instability 

regions of sandwich beam with viscoelastic core with a patch MRE [4]. 

The present work provides an analysis on how magnetic fields change the dynamic property of 

the MRE embedded viscoelastic cored sandwich beam with conductive skins, consequently, 

reducing the levels of deformation of structures. Extensive researches are being conducted at the 

laboratory of structures in this subject. In the viscous fluid the mechanical energy is dissipated in 

the form of heat and in elastic solid the energy is stored in the form of strain energy, this 

combination of properties makes the vescoelastic material to behave uniquely, such in addition to 

undergoing instantaneous strain is also undergoes creep after the application of variable load. 



 

      CHAPTER I 
Generalities of viscoelastic and magnetorheological 

elastomer materials 
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I.1. Introduction 

   In the present work, experimental and numerical analysis of the dynamics and damping 

propertics of a magnetorheological elastomer embedded viscoelastic cored sandwich beam is 

considered. The material functions of the viscoelastic core with a MRE patch are first 

determined in order to obtain the required data to characterize the material. Then, a parameter 

estimation method is considered for determining the appropriated parameters of the Maxwell 

generalized model for linear viscoelasticity.  

   In this chapter we studied some of the characteristics and classification of smart materials, 

and the latter are used in many fields and have many applications. 

   In general usage, the term elastomer means a group of polymers characterized by large 

deformability, time dependent (viscoelastic) behavior and considerable changes in material 

behaviour by temperature. Further properties of elastomers include a stress-strain curve 

demonstrating strongly strain-rate dependent non-linear characteristics and incompressibility, 

making it really difficult for engineers to determine the dimensions of structural components 

made of them. In spite of innumerable problems, 

I.2. Generalists of viscoelastic material 

I.2.1. Definition 

    Viscoelastic materials are named by their ability to display both viscous and elastic 

behavior. Whenever a body is subjected to an external force or deformation, the body 

responds by rearrangements of its microscopic constituents. In idealized viscous fluids, the 

time required for the rearrangement is assumed to be infinitely small. For ideally elastic 

solids, the time is assumed to be infinitely long. However, in any physical material, these 

rearrangements must take some finite time. Hence, most real-life materials demonstrate some 

viscoelastic properties. These effects may be particularly important when considering 

synthetic polymers or biological materials such as muscles or soft tissue. For a more thorough 

introduction to viscoelastic behavior and modeling than the material presented here, the 

monographs provide ample material. The history of viscoelastic modeling dates back to the 

last half of the nineteenth century and the works of Boltzmann, Kelvin, Maxwell and 

Weichert. The two main characteristics of viscoelastic behavior are the stress response of the 

material under an induced strain relaxation, and the strain response of the material under an 

induced stress: creep or retardation. Different materials can thus be identified by their 
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relaxation and creep response. To make ideas more concrete, consider a body of some 

material and the situation where a force is applied to a part of the boundary, kept constant for 

some time, and then removed. [5] 

 I.2.1.1. Viscous materials  

   Like honey, resist shear flow and strain linearly with time when stress is applied like 

Newtonian Liquid, fig.I.1. 

 

Figure.I.1.defferent types of response to a change in strain rate 

 (1) –Newtonian fluid                               (3) –Pseudo-plastic fluid 

   (2) –Dilatants fluid                                  (4) –Bingham fluid                

 

I.2.1.2. Elastic materials  

   Strain when stretched and quickly return to their original state once the stress removed like 

aluminum Stress versus strain in the viscous solid in loading and unloading process as figure 

I.2 

 

 

Figure.I.2. stress-strain curve for viscoelastic material in loading and unloading cycle 
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The curve of both viscous and elastic material in loading and unloading cycle.figure.I.3 

 

Figure.I.3. stress-strain curve for viscoelastic material 

The red area is a hysteresis loop and showns the amount of energy lost in loading and 

unloading cycle 

I.2.2. Mathematical Modeling of Linear Viscoelasticity  

   The uniaxial, non-aging and isothermal stress-strain equation for a linear viscoelastic 

material can be represented by a Boltzmann superposition integral, 



 d

d

d
tGt

L

 
0

)(

)(
)()(

                                                                                                  (I.1) 



 d

d

d
tGt  

1

0
)(

)(
)()(

                                                                                                      (I.2) 

   Where ı (t) and İ (t) stands for stress and strain, respectively, G (t) is the shear relaxation 

modulus and C (t) is the creep compliance of the viscoelastic material.   

   Different mechanical models, composed of springs and dampers, are provided in the 

literature in order to modeling the relaxation modulus and the creep compliance of 

viscoelastic materials.  

   The generalized Maxwell model or Wiechert model, which consists of a spring and (n) 

Maxwell elements connected in parallel, results in the following Prony series for the 

relaxation modulus  
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ieGGtG



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 
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    Where G is the equilibrium modulus, iG  and i  are the i-th relaxation strength and 

relaxation time, respectively. 

   The creep compliance, on the other hand, can be characterized more easily using the 

generalized Voigt model or Kelvin model, 

Which consists of a spring and a dashpot and (n) Voigt elements connected in series, this 

model yields the creep compliance given by 












 

n

i

t

ig
ieCCtC

1

1)(
                                                                                            (I.4) 

   Where 
gC  is the glassy compliance, iC and i  are the i-th retardation strength and 

retardation time, respectively. 

 Considering Eq. ( .3), the corresponding relaxation function in the frequency domain may be 

obtained 

  '')( jGGG                                                                                                           (I.5) 

Where, 1j  , )(' G  is the storage function and )('' G  is the loss function, given by 


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                                                                                             (I.6) 
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 
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1
22

22
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1
)(




                                                                                                    
(I.7) 

   Therefore, for a given viscoelastic material, an inverse problem of parameter identification 

may be defined in order to fit the material functions in Eq. (I.3-I.5) to a set of experimental 

data. 

I.2.3.Viscoelastic tensile tests  

   The behavior of viscoelastic material under axial load can be explained with superposition 

of elastic and viscose elements. While elastic behavior is modeled by means of a simple 

spring (Hooke model), viscose behavior is modeled by means of a dashpot (Newton model). 
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  The most commonly viscoelastic tensile tests encounters only three (creep, stress relaxation 

and dynamic loading)   

I.2.3.1. Creep test  

It consists of measuring the time dependent strain from the application of steady uniaxial 

stress fig.I.4  

The characteristics of creep function ideally should increase with time and converge to a 

steady state final value. 

 

Figure.I.4.creep test curves 

I.2.3.2. stress relaxation test 

   It consists of monitoring the time dependent stress resulting from a steady strain fig.1.5  

The characteristics of relaxation function ideally should decrease with time and converge to a 

steady state final value. 

 

Figure.1.5. stress relaxation test curves 

 I.2.3.3. Dynamic loading test  

   For viscoelastic materials, the modulus of elasticity can be assumed to be constant for static 

forces and sinusoidal forcing function, however, when viscoelastic material undergo 
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excitations from a random or transient forcing function the constant modulus of elasticity 

assumption may not be valid.  This is because the second order equation of motion has non-

constant coefficients or coefficients that very as a function of frequency. Creep and relaxation 

tests are convenient for studying materiel response at long times (minutes or days) but less 

accurate at short times (second or less) dynamic test resulting from a sinusoidal strain (or 

stress are after well suited filling out the “short time" rang of response figure.I.6 

 

 Figure.I.6. sinusoidal resulting of dynamic loading test 

We can observe that, the strain in viscoelastic material is retarded in phase by an angle į 

I.3.Viscoelastic Sandwich Beam  

   For damping treatment with viscoelastic materials Grootenhuis summarized prior research. 

There are mainly two types of surface damping treatment: unconstrained and constrained. In 

the unconstrained layer treatment, a layer of viscoelastic material is applied with adhesive to 

the surface of structure. The energy is dissipated by the cyclic tensile and compressive strain 

when structure is in bending motion. In the case of constrained layer treatment, a stiff layer is 

added with adhesive to the top surface of viscoelastic layer so that the viscoclastic layer is 

sandwiched between the main base structure and elastic top layer. In this case, when the 

sandwich structure undergoes bending motion, the constrained layer causes significant shear 

deformation in the viscoelastic layer. The constrained layer damping trcatment is more 

efficient because the viscoelastic materials dissipate energy mainly by the shear deformation 

and the constrained layer augments the magnitude of shear deformation significantly. A 

constrained layer beam is comprised of two elastic layers separated by a viscoelastic core 

layer. fig.1.7 
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Elastic layer (aluminium) 

Viscoelastic layer 

Elastic layer (aluminium) 

FigureI.7.sandwich layer beam 

I.4. Viscoelasticity Models  

   To comprehend the effect of mechanic behavior of viscoelastic material and to represent it 

mathematically, the need of specific mechanical analog model arises.  

    Simplest way to capture both elastic and relaxation nature of polymers is by developing a 

model consisting of both elastic solid and viscous fluid dashpot.   

   These mechanical analogs use "hookian" spring depicted in figure.I.8 and described by  


 cE
   

E  

 

 Figure.I.8. Hookean spring 

The viscous part can be modeled a “Newtonian” deshpot (damper) shown in fig     .9 in 

which the stress produce by strain rate    

                                η 

 

Figure.I.9. Newtonian dashpot 

   Various models with different combinations of solid and viscous fluid dashpot have been 

developed and here in the following we will briefly discuss Maxwell, Voigt, Zener Models 

known as Standard Solid Models, 
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I.4.1. Maxwell model  

    The spring and damper elements can be arranged in different variations depending on the 

material or structure to be modeled. For example, viscoelastic liquids can be approximated 

using a spring and dashpot in series. This model is known as the Maxwell element and is 

illustrated in Figure.I.10. 

 

Figure I.10. Schematic representation of Maxwell model  

I.4.2. Voigt model 

    The spring and damper (dashpot in parallel) is known as the Voigt model and can be used 

to approximate a viscoelastic solid. The Kelvin-Voigt model, illustrated in Figure.I.11 is the 

simplest model for a viscoelastic material.  

 

Figure I.11. Schematic representation of voigt model 

I.4.3. Zener Model 

   In Zener model, two clastic springs are attached with a single dashpot in serial and parallel 

combination. Figure 1.12 

 

 Figure.I.12. schematic representation of zener mode 

I.4.4. Standard linear Solid (SLS)  

    Placing a spring parallel with the Maxwell unit gives a very useful model shown in fig.I.13 

this spring has stiffness Ke so nomed because it provides an equilibrium or rubbery stiffness.  

η E 

η 
E 

E Es 
η 
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Figure.I.13. (SLS) model 

I.4.5. Generalized Maxwell model 

    A Biot model is a variation of the generalized Maxwell model where the linear Viscoelastic 

damper in parallel is omitted from the generalized Maxwell model. A Biot model consists of a 

linear spring in parallel with an infinite number of Maxwell elements. Figure. I.14 depicts the 

Biot model.  

 

Figure.I.14. generalized Maxwell model 

   The classic models presented here can be used as building blocks when developing a model 

for damped structures and viscoelastic materials if the forcing function is sinusoidal and 

known. If the forcing function is random, transient, or unknown, both the stiffness and 

damping properties should be treated as a function of frequency  

Figure.I 15 describes the time history of the creep functions of the above discussed three 

models 

 

 

 

 

    E2 E1 
η1 

E2 E1 E0 En 
ηn η2 η1 
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Strain İ(t) 

          Maxwell  

 

  

                                                        Zener 

voigt 

 

                                                              Time (t) 

Figure. I.15. creep function for three models 

   We can observe that the creep function predicted by the Maxwell model, it does not 

converge to steady state value but keep on increasing with time. 

And figure I.16 describes the time history of the relaxation function of the above discussed 

three models. 

Stress ı(t) 

 

 

                                                           voigt 

     zener                            

 

      maxwell 

                                                                                                                                   Time (t) 

Figure.I.16. relaxation function for three models 

   We can observe that relaxation function predicted by the Voigt model impractical. It keeps 

constant throughout the time. 
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Table.I.1.viscoelastic material models and their mechanical properties 

 Maxwell model Zener model Voigt model 
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I.5. Smart materials   

I.5.1. Generality  

   Smart or intelligent materials are material that has to respond to stimuli and environmental 

changes and to activate their function according these changes.  The stimuli like a 

temperature, pressure, electric flow, and magnetic flow, light, mechanical, etc can originate 

internally or externally.  Smart materials and related technologies have been drawing an 

increasing amount of attention from researchers in related fields worldwide.  In the past 

decade, smart materials and structures has been one of the most progressive fields of research.  

Recently developed materials and devices have been used to address many challenges in 

aerospace, mechanical, bionics and medical technologies.  The progress made in developing 

advanced materials and devices is impressive and encouraging.  The theme of this special 

section is smart actuators and applications.  This is one of the research areas of smart 

materials and structures that is recognized as an essential aspect of smart technologies.  

Therefore, we have organized this special section to promote the development of technology 

as well as international communication in this field.  In the section, current progress in the 

field of smart materials and structures is presented.  The papers published cover the most 

recent research results in the development of several different kinds of smart materials (e.g.  

fiber-reinforced shape memory polymer composites, electro-rheological fluids, electro-active 

papers, shape memory alloys etc) [6]. In addition, applications of the materials in smart 

structures are also included.  We believe that the papers published in this special section will 
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be found to provide the latest information and will encourage more researchers to make their 

contribution to this field of research.  

I.5.2. Properties of smart materials  

 Sensing material and devices. 

 Actuation material and devices. 

 Control devices and techniques. 

 Self detection, self diagnostic. 

 Self corrective, self controlled, self healing. 

 Shock absorber arrest.[7] 

I.5.3. classification of smart material 

  Smart material can be grouped into the following categories:    

I.5.3.1. Pizoelectric materials: when subjected to an electric or variation in voltage, 

piezoelectric material will undergo some mechanical change, and vice versa, these events are 

called the direct and converse effects. [7]  

I.5.3.2. electrostrictive materials: This material as the same properties as piezoelectric 

material, but the mechanical change is proportional to the electric filed. These characteristic 

will always produce displacements in the same direction. [7] 

 

Figure.I.17. electrostrictive material 

I.5.3.3. Magnetostrictive materials: when subjected to a magnetic field, and vice 

versa, this material will undergo and induced strain. Consequently, it can be used as a sensors 

and actuators  
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Figure.I.18. magnetostrictive materials 

I.5.3.4. Rheological materials: These are in liquid phase which can change state 

instantly through the application of an electric or magnetic charge. These fluids may find 

application in brakes, shock absorber and damper for vehicle seats.  

I.5.3.5. Thermoresponsive material: Thermoresponsive is the ability of the material 

to change properties in response to changes in temperature. They are useful in thermostat and 

parts of automotive and air vehicles 

I.5.3.6. fullerences: These are spherically caged molecules with carbon atoms at the 

corner of structure consisting of pentagons and hexagons, These are usually used in polymeric 

metrices fur used in smart systems. They are used in electronic and microeiectronic devices.  

 

Figure.I.19. fullerences   

I.6. Magnetorheological elastomer viscoelastic beam                                                              

I.6.1. Generality 

    Mgnetorheogical elastomers (MRE) belong to the new group of the functional materials 

called “smart”. Although smart materials are known since long time, the term smart materials.  



CHAPTER I: Generalities of viscoelastic and magnetorheogic materials  

 

MIS 15 Page 16  

Intelligent materials or less frequently used adaptive materials or multifunctional materials, 

was introduced in the eighties of the twentieth century, when some materials, which included 

in the group were already known. 

    Magnetorheological materials can be fluid, gel or even a solid material such as an 

elastomeric. Magnetorheological materials have magnetically polarisable colloidal particles 

suspended in some functional suspension, i.e. viscous fluid (silicone oil) or elastomeric matrix 

(silicone rubber).A magnetorheological fluid operates on the principle that the magnetic 

particles are randomly distributed in the liquid when no magnetic field is applied, but then the 

particles acquire a magnetic polarization and form chains in the presence of a magnetic field 

of sufficient strength, as indicated in the figure 1.20. The strength of this chain is dependent 

on the magnetic field density. Following from this, it is the strength of the particle chains 

which determines the increase in rheological properties for the fluid.  

 

Figure.I.20. Magnetorheological material A-before-and after the application of an external 

magnetic field 

I.6.2 Viscoelastic Properties of MRE 

    Many materials, especially polymers and their composites are characterized by viscoelastic 

properties. This means that they combine the features of elastic solids and viscous liquids, as 

schematically shown in figure1.21. Their behaviour is between the ideal solid described by 

Hook’s law, in which the stress is always directly proportional to the strain and in 

independent of strain rate, and a viscous liquid, in which according to Newton’s law, stress is 

always directly proportional to the strain rate and does not depend on the strain. Viscoelastic 

materials under rapid deformation behave more like elastic body, and under very slow as 

viscous liquid. Rheology describes the flow and deformation of solids and liquids under the 

influence of an external force. 

 

 Figure.I.21. Viscoelastic proprties of materials  
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  For a perfectly elastic solid when the force is applied, strain occurs immediately, and it is 

linearly proportional deformed body immediately returns to its initial state. The applied force 

can cause the shear stress (Ĳ) and shear modulus (G). G modulus determines the resistance of 

the solid to deformation and is expressed by the ratio of shear stress (Ĳ) to the shear strain ( ):  

   



G                                                                                                                                  (I.8)                          

    For an elastic solid, both stress and strain are independent on time. For the viscoelastic 

solid, rheological parameters are dependent on the time and described by Kelvin-Voight 

model for linear viscoelasticity: 

dt

d
G

                                                                                                                          (I.9)                         

Where: 

η: dynamic viscosity, 

t: time. 

    Deformed material can undergo relaxation when the applied force in maintained, which 

results in a decrease in the stress in time, until is complete disappeared, as schematically 

shown in Figure.I.22. When the force is removed, the disappearance of deformation is 

delayed. 

This delay is given by the relaxation time λ: 

 
G

                                                                                                                                    (I.10)                         

     In the area of the linear viscoelasticity delay times during creep and recovery are the same. 

Usually solids are more complicated and to describe the viscoelastic behaviour during the 

creep and recovery it is necessary to use the whole spectrum of relaxation times. In most 

testing methods of viscoelastic materials, instead of constant stress, dynamic strain 

measurements in the form of an oscillating sinusoidal function of time is used Fig.I.23  
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Figure.I.22. stress relaxation (Ĳ) at time (t) 

 t sin.0                                                                                                                        (I.11)                         

Where: 0 - applied stress, 

ω - Angular velocity [1/s or rad/s]    

ω - 2πf                                                                                                                                  (I.12)                         

f - Frequency [Hz] 

 

Figure.I.23. dynamic measurements: A - deformation of the angle φ, B – sinusoidal strain or 

stress  

I.6.3.Applications of MRE 

    Due to the dynamic damping of Magnetorheological Fluids, much research has gone into 

their development for use in shock absorbers, clutches and brakes. These MRF’s are also 

being developed as an innovative micro-machining method where abrasives are bonded to the 

ferromagnetic particles and the magnetic field is used to polish optical glass, ceramic and 

other brittle materials of millimetre or sub-millimeter scale whith a high efficiency [8]. 

Applications for Magnethorheoligical Elastomers include automotive bushings and engine 
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mounts [9], where the significant changes in spring rate due to an applied magnetic field can 

be used to control stiffness. Ferromagnetic composites have also found many applications in 

sensors, converters and controlled vibration dampers [10], however their manufacture is not 

yet widespread with standards for production. 

       There is some interest in developing soft, high strain materials as artificial muscles [11]. 

One possibility is elastomers filled with magnetic particles. When placed in a uniform 

magnetic field, such materials will tend to contract, an effect called magnetostiction. This 

contraction is due to the dependence of the composite susceptibility increasing along the 

direction of compression (in contrast, demagnetizing field can cause a material to elongate) 

I.7. Generalized Maxwell model 

A real polymer does not relax with a single relaxation as predicted by the previous models 

this loods to a distribution of relaxation times. 

 The generalized maxwell model in figure.I.24 can have as many spring-dashpot maxwell 

elements as are needed to approximate the distribution satisfactorily. 

 The behavior of linear viscoelastic material can be generally predicted using the generalized 

Maxwell model simulate the relaxation occurring at a distribution of times by the use of 

multiple numbers of spring and dashpot. 

 

Figure.I.24. generalized Maxwell model 

The total stress transmited by the model is the stress in the isolated spring (of stiffness eE ) 

plus that in each of the dashpot arms  

 jje                                                                                                                      (I.13)                         

E1 Ee E2 E3 Ej 
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The stress in the maxwell arm is: 
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The result can be written 

 

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The equation.I.16 reminiscent the hook’s low  E  but in the Laplace plane is called (the 

associated viscoelastic constitutive equation)  

I.8. Conclusion 

   The behavior of a viscoelastic structure is intermediate between that of an ideal elastic solid 

and that of a viscous liquid  

   Our materiel is constrained layer beam is comprised of two elastic layers separated by a 

viscoelastic core layer. The top and the bottom layer is aluminum and the core layer is the 

magnetoreologic elastomer, we choose it for magnetic field tests. A magnetorheologic 

elastomer operates on the principle that the magnetic particles are randomly distributed when 

no magnetic field is applied, but then the particles acquire a magnetic polarization and form 

chains in the presence of a magnetic field of sufficient strength. 
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    Creep function predicted by the Maxwell model, it does not converge to steady state value 

but keep on increasing with time. The behavior of linear viscoelastic material can be generally 

predicted using the generalized Maxwell model for n spring and dashpot. 
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II.1. Introduction 

   It is very important to study the static behaviour of MRE for predict the statement of 

stiffness and damping in the structure  

   In this research work static analysis of a MRE sandwich beam has been studied. A Ritz 

method model has been developed for the three layer MRE sandwich beam  

II.2. mathematical formulation  

The sandwich beam model described here based on the following assumptions:  

Top and bottom layers are considered as ordinary beams with axial and bending resistance. 

The core layer carries negligible longitudinal stress, but takes the non linear displacement 

fields in x and z directions.  

Transverse displacements of top and bottom layers equal transverse displacement of core at. 

   The sandwich beam considered here consists of three layers with viscoelastic material as a 

core layer, the top and bottom layers are isotropic and linear elastic material with thickness 1h  

and 3h . The magnetorheological elastomer (MRE) core layer has a thickness of 2h , the 

complex shear modulus in the form of ''' iGGGc  . The model of the magnetorheological 

sandwich beam has shown in the figure given below 

 

Figure II.1. magnetorheological sandwich beam model 

II.2.1. displacement field 

The assumed displacement fields in the sandwich beam follows, 

X 

Y 
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The longitudinal and transverse displacement fields for the top and bottom layer are given by: 

     tx
x

w
ztxutzxu i

iii ,,,,
0




                                                                                              (II.1)     

   txwtzxw ii ,,, 0                                                                                                                 (II.2) 

   where, iu  in the top and bottom layer for any (x, z) location, 
0

iu  longitudinal displacement 

at the centroid of the top layer, iz distance from centroid of top layer in transverse direction, 

iw  transverse displacement in the top layer for any (x, z) location, 
0

iw  transverse displacement 

at the centroid of the top and bottom layer and (i =1, 3) is the local coordinate of the top and 

bottom layer. 

    Displacements field in the viscoelastic core layer varies nonlinearly in both x and z 

directions. By taking an elastic analysis, Bai and Sun [12] assumed that the longitudinal and 

transverse displacement of the core is 
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 cve  12                                                                                                                            (II.5) 

   Where 2u  longitudinal displacement in the MRE core layer for any (x, z) location 
0

2u  

longitudinal displacement at the centroid of the MRE core layer, 2z  distance from centroid of 

core layer in transverse direction,   shear deformation in MER core,   transverse normal 

deformation in MER core, 2w  transverse displacement in core layer for any (x, z) location, 

0

2w  transverse displacement at the centroid of the MER core layer and cv  poisson’s ratio of 

viscoelastic core layer. 

 To describe the displacement field for the core layer, four generalized degrees of  freedom 
0

2u ,

0

2w  and   are required. Non linear displacement field of a viscoelastic core layer allows the 

transverse displacement of top constrained layer and bottom layer to remain independent of 

each other. This leads to transversal extension and compression of the core layer. As assumed 
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in the assumptions that there is the perfect bond between the three layers the following 

relation are used: 

At top interface  

   thxuthxu ,2/,,2/, 1122                                                                                                   (II.6) 

   thxwthxw ,2/,,2/, 1122                                                                                                 (II.7) 

At bottom interface, 

   thxuthxu ,2/,,2/, 3322                                                                                                  (II.8) 

   thxwthxw ,2/,,2/, 3322                                                                                                 (II.9) 

Now substituting the displacement fields of the MRE core layer from Eq. (3) and Eq. (4) into 

Eq. (6), (7), and (8), (9), out of four degrees of freedom it is possible to eliminate the three 

degrees of freedom in core layer, specifically through the following relations 
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II.2.2. Mathematical model  

  The bar OH is a length » L », built in O is subjected to the linear density of the force P (x)  

And the force xF  in A    
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Figure.II.2. Traction bar diagram 

II.2.3. Theorem of virtual works  

The Theorem of virtual works is written: 

  
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                                                                  (II.13) 

Or: 0=u(x)/u(0)  Checked the relationship 0u(0)u(x)/    

By introducing the displacement 
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And the displacement virtual: 
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In the expression of the theorem of the virtual works, on obtains: 
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We still again: 

xF  
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  The variational formulation thus obtained is verified whatever scissile n constants jC  are 

solutions of the algebraic system: 

ijij bca   
II.2.4. Theorem of potential energy 

The potential energy in this case is given as follows: 
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Is minimized if: 
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The values of n constants c j  
which minimize the potential energy cancel the "n" partial 

derivatives 0
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N finds the system jjij bca  which was obtained from the virtual works theorem.  

  

 
 II.3. Numerical modeling 

   The structure studied in the work is considered as a bar of languor L Discretized into six 

elements.

 

The recessed bar at L, is subjected to the action of gravity and the force Fx, where x 

Is vertical descending, Applied to the surface center of The non-recessed terminal section 
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Figure. II.3. Vertical bar with traction 

The six basic functions considered are given by: 
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The displacement, u(x) depends on six entries, iC , 1,6 which check system of equations:   

ijij bca   
Where:
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The n constants iC  are calculated by:  

  jiji FKC          with         nj

ni

,1

,1


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II.3.1. Ritz method 

In the Ritz method, the shape of deformation of the continuous system is approximated using 

a series of trial shape functions the must satisfy of the continuous system can be written as  
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Where 1 , 2 , ... and n  are trial shape functions which can be the Eugen functions, a set of 

assumed mode shapes, or a set of polynomials, and 1C , 2C , ... nC  are constant coefficient 

called the Ritz coefficients. 

   In Eq. (II.26), the functions 1 , 2 ... n  are assumed to be known, while the coefficients              

1C , 2C  ..., and nC  are adjusted by minimizing the Rayleigh equation with respect to each of 

these coefficients. The procedure leads to a homageneaus system of n algebraic equations the 

matrix mass and stiffness matrix coefficients are determined by 
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dxEAK

l

jiij 
0

                                                                                                                (II.28) 

Calculation of element of the "stiffness matrix" 
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Therefore, the stiffness matrix are given as follows 

 
 
 
(II.51) 

                                      
                       

The inverse stiffness matrix is given by relation (II.52) below.  
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Calculation of the displacement coefficients 
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II.4. Conclusion 

   In this chapter, are presented of the theories performed to allow describing the behavior of 

the beams and the energy methods, these latest exposed methods in this chapter have been 

used for the analytical modelisations digital and the beam magnetorheologique which will be 

presented in the next chapter.  
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III.1. Introduction 

   The present work is devoted to the experimental analysis of the behavior of the composite in 

Mgnetorheogical elastomers under dynamic loading. The development of the elastomer 

charged to 40% ferromagnetic particles, the characterization of the rheological properties and 

the interaction between the loads as a function of the magnetic field have been studied. The 

results found shows that this composite presents strong energy dissipation, further accentuated 

by the structuring and the magnetic field.  

III. 2. Brief overview on the modeling of MRE 

during dynamic solicitations, An elastomer exhibits a viscoelastic behavior, That is to say that 

it presents at the same time the properties of a elastic solid, and also those of a viscous fluid 

.[13,14] The composite structured can even goes further, because the viscoelastic properties 

can be controlled by the intermediate of a magnetic field [15,16]. The issue here is to 

understand the significant energy dissipation of the structured composite, which increased in 

the presence of a field [17]. The 80’s saw the birth of an interest for the materials with 

variables properties under the influence of an external factor; the temperature, the electric or 

magnetic fields. Included in their ranks the Mgnetorheogical elastomers (MRE)[18]. These 

materials (MRE) are composed of magnetic particles polarizable dispersed in a matrix, 

generally made from silicone oil. Today much of scientific laboratories conduct research on 

the MRE. Usually elastomers for flexible silicone or polyurethane are used for polymer matrix 
they are filled with a significant share of magnetic particles, Often 30% of the volume. To 

reduce the amount of magnetic particles, a vulcanization process forced by a magnetic field 

has been used in order to increase their efficiency. The MRE mad of soft facts matrices of 

silicone or polyurethane show a response to magnetic fields significant but their low 

mechanical properties prevent them to be used in engineering [19]. It is expected that these 

materials, although they are in the development phase, Will be very useful for solving 

problems of vibrations, which are recurring problems for the construction and the use of 

machines or systems. The Mgnetorheogical effect and properties of damping are fundamental 

for the applications of MRE. They are used in particular to achieve the dampers, the bushings 

of suspensions to variable stiffness and magnetostrictive materials [20]. For MRE it is agreed 

the magnetic phenomenon which matters. To determine the magnetic parametres, it is 

necessary to design the test bench beforehand and to prepare the test to obtain the desired 
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characteristics. In order to obtain the curve of magnetic hysteresis of the MRE, the tools and 

following experiments were accomplished [21], [22] In these last years, The scientific 

community is concentrated on the knowledge of the rheological behavior. Valery P and al 

[23] have studied the isolation from vibrations by the use of Mgnetorheogical elastomers. 

This experimental work mainly presents the parameters the most important of the active shock 

absorber. Mirosław Bocian and al [24] elaborate a mechanical structure based on a 

Mgnetorheogical elastomer, This elastomer has been designed for the absorbation of energy 

and the mitigation of the vibratory movements from a excitation of impact. A mathematical 

model adequate to been derived by Mateusz Kukla and al [25], this work presents the results 

of the analysis of the behavior in compression and the effect of the static magnetic field on the 

latter. It also presents attempts to use of rheological models to describe the MRE. The 

influence of radiation on the module of shearing of the Mgnetorheogical elastomers was 

studied [26]. The experimental results show that the initial shear modulus and the magnetic 

field shear modulus induced as increases in the first, and then decrease with the increase of 

the radiation dose. Two factors are considered for explaining the experimental results. One is 

the reaction of crosslinking and degradation induced by radiation, the other is the change of 

the magnetization of the saturation of the particle of iron carbonyl.  

In this work we have studied the influence of the variable magnetic field on the rheological 

properties of an elastomer loaded in 40% of iron particles. First of all the development of the 

sample of Mgnetorheogical elastomers is presented. Then the influence of the magnetic field 

on the dynamic properties adjustable from the sample of MRE is studied experimentally using 

Viscoanalyseur dynamics and results obtained for different intensities of the magnetic field 

are presented.  

III.3. Theoretical modeling 

In this work, we will see that the model of generalized Maxwell is suitable for describing the 

mechanical behavior of our elastomer, this model consists of the spring and N models of 

Maxwell assembled in parallel (figure.III.1). The modules of elasticity are denoted by 

0G , 1G , 2G ,…,
n

G  While viscosity coefficients are designated by 1 , 2 ,…,
n

 . 
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 Figure.III.1. Model of generalized Maxwell 

III.4. Laminated functionally graded beam with interlayer   

Considering two functionally graded layers bonded by viscoelastic elastomer witch can be 

modeled by Maxwell-wiechert model. This model contains a series of spring-dashpot units 

and hookean spring. The time-depandent shear modulus G(t) of the viscoelastic elastomer 

decays with time and can be expressed as prony series: 





 

N

i

t

i

ieGGtG

1

)(


                                                                                                    (III.1)        

Where
i

G , G and 
i

 are the long-term shear modulus, the relaxation shear moduli and the 

relaxation time. 

The deformation of the model is the sum of the deformations of the two elements, Reversible 

represented by the spring element and viscous corresponding to the damper such as: 

  E                                                                                                                       (III.2) 

Based on boltzman superposition principle, the shear stress  tx,  can be expressed as: 

                 tdGtxtxdtGd
x

tGxtGtx

t

 



  ,,

,
0,,

0



                            (III.3) 

Where the (*) denotes convolution. The equation above describes relaxation constitutive 

relationship. After fourier transform, can be expressed as: 

 

      ,., xGix                                                                                                        (III.4) 
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Where  G  is the Fourier transform of shear modulus  tG  and i denotes 1 , can also be 

written as: 

      ,., xGx
                                                                                                         (III.5) 

To take account of the duality between viscosity and elasticity, It frequently uses complex 

numbers (two components) when a material is subjected to a dynamic solicitation, the 

complex module )(*
tG  for a solicitation in shear, writes:  

)1(* iGGiGG                                                                                                     (III.6)  

G , The real part, called a module of conservation, that characterizes the rigidity of the 

elastomer and G  the imaginary part, called a module of dissipation, which characterizes the 

viscous behavior. 

The loss factor or damping factor is written: 

'

''

)tan(
G

G
 =                                                                                                               (III.7)                              

III.4.1. Material and experimental analysis 

III.4.1.1. MRE material and implementation 

  The elaborated composite is an elastomer of silicone oil, RTV 141 and RTV 141B associated 

with ferromagnetic loads of average diameter 1.8-2.3 μm. The powder is carefully mixed with 

elastomer, first by hand (Figure.III.2.a) and then in a mixer for 1 hour to break the maximum 

aggregates and homogenize the mixture. The latter is degassed under vacuum for 15 minutes 

and then poured into a rectangular shaped mold with two coils (Figure.III.2.b), The mixture is 

then moved into sliding movement to prevent sedimentation of the particles during 

crosslinking under a magnetic field. The time of cross-linking is very sensitive to both the 

temperature and to the nature of the particles The silicone oil composite, RTV 141 and iron 

particles are cross-linking in 24 h at ambient temperature of 27°C. The rheological properties 

are determined using a Viscoanalyseur DMT450 of laboratory (LPMC) (Figure.III.2). And at 

a constant frequency of 50 Hz 
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Figure.III.2. a) Prepared Elastomer, b) Dynamic viscoanalyseur DMA
+
450 

  The ingredients of a rectangular magnetorheological elastomer specimen of 35 mm length, 

25 mm width and 2 mm thickness loaded with 40% iron particles of its total volume. are 

given in Table 1. 

 

Table1. Constituents of the Mgnetorheogical elastomers   

Loaded elastomer to 40% ferromagnetic particles 

Time of reticulationen 

Hours 

mSilicon Oil 

(g) 

mRTV(A) 

(g) 

mFe 

(g) 

mRTV(B) 

(g) 

24h 1.064g 1.0385g 7.559 0.104 

III.5. Results and Discussion 

   The modules-deformation curves of isotropic composites loaded to 40% with and without 

magnetic field are compared (Figure.3.a,b). in this figure,  We observe that the pace of the 

curves of the conservative and dissipative module decreases as a function of the increase in 

shear deformation, we distinguish a sudden change of the conservative and dissipative 

modules for a shear deformation of less than 4%, then a Slow variation for shear deformation 

greater than 4% 

The explanation of this stiffening of the material submitted to a field is the following: at the 

microscopic level, the magnetic field creates attractive interparticle force whose the 

consequence is to strongly stiffen the chains of particles, which then act as real small fibers. 
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Then, during the deformation, the elastic stress will exceed the magnetic stress and the fibers 

will be progressively broken into ever shorter elements 

On the other hand there is a significant increase in these modules is observed under the 

influence of the magnetic field.  
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Figure.III.3.a.  Comparesent between consirvation modul and shear deformation by different 

values (mT)  
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Figure.III.3.b. Comparesent between dissipation modul and shear deformation by different 

values (mT) 
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The Figure.III.4 shows the evolution of the angle of loss a function of shear deformation, as 

shown in this figure, the magnetic field plays an important role in the energy dissipation, we 

observe that the loss factor increases very strongly with the increase of the magnetic field. On 

the other hand, the angle of loss shows clear differences (Fig. 4): the fraction of energy 

dissipated increases with the field and with the creation of the pseudo-fibers formed by the 

ferromagnetic particles 
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Figure.III.4. Variation of  loss factor a function of  shear deformation by different values of 

magnetic field. 

 The results of quasi-static tests are illustrated in (Figure.III.5), a strong effect 

Mgnetorheogical is observed on our composite loaded to 40%, Sign of an interaction between 

chains. It should be noted that the magnetic field considerably modifies the rheological 

properties and plays essentially on the shear deformation.In addition, the decrease and the 

relative increase of G  is a little intense than for the dissipative module G   or the addition of 

oil strongly reduces the local constraints and requires stronger deformations to access critical 

constraints. 

The magnetic field despite all small defects (bad aggregates, bad alignments of chains, 

columns of particles very close ...), which then contribute to the interaction between 



CHAPTER III: Experimental study of composite sandwich beam 

 

MIS 15 Page 40 
 

neighboring chains and during solicitations, we will be as many additional detachments, 

Which are reflected at the microscopic level by the accentuated G  and G  . 
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Figure.III.5.a. Difference between consirvation and dissipation a fonction of shear 

deformation withe (0 mT)   
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Figure.III.5.b. Difference between consirvation and dissipation a fonction of shear 

deformation withe (100 mT)   
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Figure.III.5.c. Difference between consirvation and dissipation a fonction of shear 

deformation withe (150 mT)    
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Figure.III.5.d. Difference between consirvation and dissipation a fonction of shear 

deformation withe (300 mT)   

III.6. Conclusions 

   The magnetorheological elastomer loaded with 40% of iron particles is prepared under 

different magnetic fields. The microstructures are greatly affected by the magnetic flux, 
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density during the preparation. The MRE viscoelastic properties are also tested by a 

mechanical–magnetic coupling dynamic mechanical analyzer (DMA). The results show that 

the field-dependence of MRE viscoelastic properties increase with the applied magnetic flux 

densities during testing, the rheological properties of the elastomer also depend on the 

arrangement of their particles. The application of magnetic field leads to an important 

increase in elastic modulus. The results show a non-linear change in the rheological properties 

with respect to the variation of the magnetic field strength, it is due to the magneto-

rheological effect.  
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IV.1. Introduction 

   In this chapter we had simulate structures sandwich beam in case statics, we had simulated the 

sandwich beam which is consisted of three elements; two elastic skins. the bottom face sheet and 

the top face sheet and the third element is a soft core as like the sandwich beam in the real 

experience .to simulate and study the properties dynamic of this structures; we had used 

ABAQUS software which can give distribution of the stress, strain and field of the displacement 

and the deformation  of the specimen. We had analyses three different cases of support, then 

finding diagrams variation of the forces (N) function of the elongation (mm) in a magnetic field 

for the three tests, then we compare With diagrams of Rayleigh Ritz method Which we have 

calculated 

IV.2 Introduction of ABAQUS 

   ABAQUS is a compressive general purpose finite element program that contain 100.000 lines 

of code it is capable of performing static, dynamic, heat transfer, fluid flow an electromagnetism 

analysis, ABAQUS has a complete new look with a multiple window incorporating graphical 

user interface (GUI), pull down menus, dialog boxes and tool bar, Today we fined ABAQUS in 

the whole engineering field 

IV.3. Structure 

IV.3.1. description of the structure 

   Is the sandwich beam consists form three parts: the vescoelastic core in the middle which is 

made of elastomer and two elastic layers the bottom face sheet and the top face sheet which are 

mad of aluminum.  

 

Figure.IV.1. the structure of the sandwich beam 



CHAPTER IV: Numerical simulation and Comparison results 

 

MIS 15 Page 44  

IV.3.2. Geometrical parameters of the structure 

The sandwich beam consists of elastomer and aluminum whose dimensions are provided in this 

table.  

Table.IV.1. geometrical parameters of the sandwich beam  

dimensions Lenghth 

(mm) 

Width              

(mm) 

Thichness 

(mm) 

 

Face sheet 1 

Aluminum 

35 mm 25 mm 1 mm  

Viscoelastic  

Material 

elastomer 

35 mm 25 mm 2 mm  

Face sheet 2 

Aluminum 

35 mm 25 mm 1 mm  

                                 

IV.3.3. Simulation in based to following steps 

The simulation is based to following steps: 

 

 

 

 

 

 

 

 

 

 

 

     START 

    Create the model 

        Input material properties 

           assembly 

       step       load 

       mesh 
       Job 

    visualisation 
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IV.3.3.1. Created model 

The first step to create the structure is create the segments by drawing the vescoelastic core with 

its dimention, and then we draw the two face sheets with their dimension 

   

Figure.IV.2. The dimension of the layer in 2D 

 

 

Figure.IV.3. The shapes of the two face sheet and the core in 3D 

35 mm 

25 mm 
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IV.3.3.2. properties of materials 

After the creation the model we have to enter the material properties of the part to define the 

specimen properties of each material as shown in this table. 

Table.IV.2. mechanical properties of sandwich beam 

Material Type  Elastic modulus 

(E) [Mpa]  

Density ( ) 

[
     ]  

Poisson’s 

Ration ( ) 

 

Face sheet 1 

Aluminum 

 
7200 

 
7200 

 
0.33 

 

Viscoelastic  

Material elastomer 

 
1.7 

 
1100 

 
0.44 

 

Face sheet 2 

Aluminum 

 

7200 

 

2700 

 

0.33 

 

                                                                        

Table.IV.3. rheological properties of the elastomer 

Experimental properties of the elastomer magnetorheological 

  
Magnetic field 

        
 G’ (Mpa)  

  
 G’’(Mpa) 

  
B= 0 T  

 
1.6 

 
0.33 

  

B= 0.3 T 

 

1.93 

 

0.54 

  

B= 0.5 T 

 

2.07 

 

0.35 
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IV.3.3.3. Assembly 

Use the ABAQUS/CAE assembly module to create instances of our past and to contract an 

assembly by positioning those instances relative to each other in a global coordinate system and 

we can create our structure sandwich beam 

 

Figure.IV.4. the sandwich beam 

IV.3.4. Step 

   within a model we define a sequence of one or more analysis steps, the step sequence provides 

a convenient way to capture changes in the loading and boundary conditions of the model, 

changes in the way part of the model interact with each other, and any other changes that may 

occur in the model during the course of the analysis, in addition, steps allow us to change the 

analysis procedure, the data output, and various controls, we can also use steps to define linear 

perturbation analyses. 

IV.3.5.Load                                                                                                                               

this process allows as putting and controlling the type of charge (concentrated force, moment, 

pressure ...) and also put the convenient boundary condition on sandwich beam. We restrain one 

and of the sandwich beam and the other are free 
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IV.3.6. Boundary condition  

[One restrained tip with tow face sheets has a regulare shape] 

 

Table.IV.4. boundary condition   

clamped (x=0) Free (x=L)            
Q

x

w





0
3

3

            
M

x

w





0
2

2

 

 

We get 

 

Figure IV.5. Concentrated force in the sandwich beam 

 

IV.3.7. mesh 

a mesh is an arrangement of finite elements defined on an FEA model, in ABAQUS/CAE we can 

define a mesh on a part or on the assembly. Mesh is the activity of discretizing into a finite 

element representation. 
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Figure IV.6. The sandwich beam is meshed 

IV.3.8. problem size 

Global seeds have been assigned. 

576000 elements have been generated on instance: Part-1-1 

576000 elements have been generated on instance: Part-2-1 

1152000 elements have been generated on instance: Part-3-1 

IV.3.9. Job 

Thanks to this process we can easily start the submit that calculates the stress, strain, frequencies 

....etc. 

IV.3.10. Visualization 

   the visualization module provides graphical of finite element models and result, it obtains 

model and result information from the output database, major capabilities of the visualization 
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modul include in reformed and deformed shape plotting, results contour and symbol plotting X-

Y plotting and reporting, field output reporting, plot customization and animation. 

IV.4. Numerical results and discussion 

   in this three figures (8-10) we see that Abaqus result with finite element method show us that 

the high value of elongation is situated on the side of sandwich beam who we are applied forces, 

we shows this with red color, where it is fixed on the other hand of the sandwich beam. 

 

Component U3 (0.1T) 

 

Figure IV.7. The elongation in the sandwich beam with deformation scale factor +6,371     
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Component U3 (0.5T) 

Figure IV.8. The elongation in the sandwich beam with deformation scale factor +3,688     

Component U3 (0.3T) 

Figure IV.9. The Elongation in the sandwich beam with deformation scale factor +4,521     
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Table.IV.5. results of figure 8.9.10 

component U3-1 U3-2  U3-3  

Max           

Elongation 

 
+4,709     

 
+6,636     

 
+8,134     

 

Min           

Elongation 

 
0 

 
0 

 
0 

 

deformation 

scale factor 

 

+6,371     

 

+3,688     

 

+4,521     

 

 

IV.4.1. Deduction 

   We observe that the major elongation occurs on the side even other side face at it is fixed 

(encastre) and (when there are reaction force), contrary the deformation occurs mainly in the 

viscoelastic core, and From these components we see that elongation is different within the 

sandwich beam.                                  

IV.4.2. Ritz results 

   In this Figures 11.12.13 shows the variation of the elongation (mm) as a function of traction 

forces (N) of resonance of the beam under the influence of a magnetic field ranging from 0T to 

0,5t.with method of Ritz 

 
                Figure.IV.10. variation of force as function of elongation with B=0,1T 
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                Figure.IV.11. variation of force as function of elongation with B=0,3T 

 

 
Figure.IV.12. variation of force as function of elongation with B=0,5T 
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Table.IV.6. results of Ritz method corves 

MFI  Ultimate forces   

Point 

Upper yield 

forces Point 

Elongation in 

Upper yield forces 

Point 

 

B=0,1T                   

3000 N 

 

 
2700 N 

 
1.2 (mm) 

 

B=0,3T  
5600 N 

 
5000 N 

 
2.1 (mm) 

 

B=0,5T  

7500 N 

 

 

6900 N 

 

 

3.8 (mm) 

 

 

 

IV.4.2.1. Deduction 
Table of results represent variation of forces-elongation versus under the excitation magnetic 

field intensity (B=0.1, B=0.3, B=0.5). We used the Ritz method and we see the elongation 

increase as the increasing of magnetic field intensity because, the increasing of magnetic field 

caused the increasing of the MRE stiffness, 

IV.4.3. ABAQUS results 

In this Figures 14.15.16 shows the variation of the elongation (mm) as a function of traction 

forces (N) of resonance of the beam under the influence of a magnetic field ranging from 0T to 

0,5t, with method FEM (ABAQUS) 
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. 

 
Figure.IV.13. variation of force as function of elongation with B=0,1T 

 

 

 
Figure.IV.14. variation of force as function of elongation with B=0,3T 
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Figure.IV.15. variation of force as function of elongation with B=0,5T 

 

Table.IV.7. results of Abaquz corves 

MFI  Ultimate forces   

Point 

Upper yield 

forces Point 

Elongation in 

Upper yield forces 

Point 

B=0,1T                    

3000 N 

 

 
2700 N 

 
1.2 (mm) 

B=0,3T  
5600 N 

 
5000 N 

 
2 (mm) 

B=0,5T  

7500 N 

 

 

6900 N 

 

 

2.9 (mm) 

  
IV.4.3.1. Deduction 

Abaquse results corves represents the variation of forces-elongation curves of the sandwich beam 

in deferent magnetic field intensity (B=0.1,B=0.3,B=0.5),we can observe the Ultimate forces and 

Upper yield forces varied proportionally with magnetic field intensity variation, the increasing of 

magnetic field intensity caused the increasing of the MRE stiffness, 
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IV.4.4. Comparison of ritz corves with abaqus corves 

In figures 17, 18 and 19 We compare the results corves of forces-elongation of ritz method and 

ABAQUS by finite element method, the Black corves represent the abaqus results and the blue 

corves represent the ritz method results , under the excitation magnetic field intensity  (B=0.1, 

B=0.3, B=0.5). 

 
Figure.IV.16. Comparison of ritz corve with abaqus corve with B=0.1T 

 

Figure.IV.17. Comparison of ritz corve with abaqus corve with B=0.3T 
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Figure.IV.18. Comparison of ritz corve with abaqus corve with B=0.5T 

IV.4.4.2. Deduction 

   For magnetic field intensity of B=0.1T and B=0.3T the results between Ritz method and 

abaqus it is almost similar but for magnetic field intensity of B=0.5T we had different values 

,where shows as the results in abaqus the MRE stiffness stronger than in Ritz method , where in 

really the comparison Must always to be similar. 
IV.5. Conclusion 

   This article was devoted to the experimental and numerical analysis of elongation response of 

a magneto-rheological elastomer sandwich beam without and under the influence of deferent 

values of the force, subjected to harmonic excitation by a magnetic field, the numerical and 

experimental tests were conducted on a sandwich beam with a charge rate 40% of the elastomer 

by the micro particles of iron to a highlighted an intelligent control for traction forces, the forces 

dependence and magnetic field of the viscoelastic behavior of magneto rheological elastomer 

introduces complexity in direct and accurate determination of the stiffness proportie and 

prediction of elongation response of the beam. 

0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

Elongation (mm)

F
o

rc
e

 (
N

)

B = 0.5 T

 

 

Abaqus

Ritz



CHAPTER IV: Numerical simulation and Comparison results 

 

MIS 15 Page 59  

Experimental and numerical results allowed drawing the following conclusion: 

  In the presence of elongation, the beam characteristic not stabilized under the influence 

of the magnetic field, even at variable forces. 

  For the incorporation of a layer of elastomer charged by the iron particles in a magnetic 

field, increases the rigidity without losing the characteristics due to the viscous damping 

properties of the elastomer. 

  The influence of iron charges increases the mechanical characteristics of the elastomer 

particularly the stiffness by creating attractive forces between the iron particles. 

  The stiffness and the loss factor can be adjusted in an intelligent manner based on any 

probable solicitation. 

Finally, these new structures magneto-rheological (beams or plates), with many potential 

applications in all industries, especially the building, to develop a functional composite material 

with good elongation and damping properties, it is important to monitor rheological properties 

and the magneto-rheological effect. Rheological properties depend on the amount of 

ferromagnetic particles and their arrangement. 
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General conclusion  

   The purpose of this research work is devoted to make a contribution on the determination of 

the dynamic response of beams sandwiches with a heart in Mgnetorheogical elastomers. 

   in this research work the objectives focused on the solution of traction problem in sandwich 

beam with MRE core and two isotropic face sheets and provide a basic know ledge of 

constrained layer viscoelastic damping material to apply in aerospace application while 

considering customer requirement such as cost, weight, environmental facture, and dumping 

effectiveness, first we investigate about viscoelastic and MRE materials and its different 

properties then we represent some useful classical and modern damping models, in this study 

elongation treatment has been applied to asymmetric sandwich beam, this work has also been 

extended to finite element analysis of traction structure to show the elongation response or 

harmonic response. 

 We have seen that the introduction of a viscoelastic layer dumping between two faces sheets can 

produce a structure with high damping and this sandwich structure have the additional advantage 

that their strength to weight ratio also the core increase the thickness of the structure, which lead 

to an increase in stiffness of the sandwich structure. We have used a finite element method 

(FEM) to determine the statec and dynamic response of the sandwich beam, we used rayliegh-

ritz method, method was developed for the sandwich beam analyses, in this research, the static 

strain-stress relationship was studied, static and Dynamic properties of thin sandwich structure 

with viscoelastic core were discussed in this dissertation, for the sandwich beam the necessary 

static and dynamic parameters can be now estimated. The expression of the elongation number 

and speed of traction elongation in sandwich beam were obtained, bases on both static and 

dynamic studies, the elongation dependence of traction was analyzed for a viscoelastic MRE 

sandwich beams,  in which the face sheets are much thinner than the core, or the structural 

parameter is large, it was found that if the magnetic field intensity increase in MRE the stiffness 

increase and transverse displacement decrease in static force, the non-linear change of the 

rheological properties in MRE was found, we studied analysis of vibration response of a MRE 

sandwich beam under excitation of magnetic field and influence of different values of the forces , 

found that the MRE rapidly stabilized under the influence of the magnetic field. 



GENERAL CONCLUSION  
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 The experimental results of the dynamic and static tests of the MRE samples cured without and 

under magnetic field were presented and compared in the paper. The influence of the MRE 

internal structure and external magnetic field on the researched strength parameters was strictly 

proofed. 
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