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ABSTRACT

Fault detection and diagnosis field (FDD) plays an important role in industrial processes.

It assures the safe operation of the process and reduces its maintenance costs. The im-

plementation of mechanisms for early detection and diagnosis of faults is called process

monitoring. Due to the size and complexity of industrial processes, multivariate statistical

methods are finding wide application in process monitoring. Some popular methods are

principal component analysis (PCA) for linear processes, and kernel principal component

analysis (KPCA) for nonlinear processes.

The main challenge in the KPCA based fault detection and diagnosis method is the
high computation time and memory storage space whenever the size of the training data

increases. The developed kernel matrix size depends on the number of training observa-

tions. So, it requires O(n2) storage space for its build and for which O(n3) computation

time for its eigendecomposition procedures.

In this dissertation, three new methods have been proposed to address the computation

drawbacks of KPCA. The first method aims to eliminate the redundant observations among

the training dataset based on the Euclidean distances between observations such that any

two observations with zero Euclidean distance are considered similar and one of them can

be removed. The second method removes the correlated observations and keeps only the

representative non-correlated observations to build a reduced training dataset. The third

method reduces the training dataset by eliminating the dependent observation guarding

only the independent observations. The reduced training datasets are used to build KPCA

algorithm to compute the fault indices thresholds in order to fire the alarms when the index

violated its threshold. The proposed methods are applied to two case study industrial pro-

cesses: Ain El Kebira rotary kiln process and Tennessee Eastman process. The obtained

results are compared to the ordinary KPCA and different Reduced KPCA (RKPCA) meth-

ods; in terms of false alarm rate (FAR), missed detection rate (MDR), and detection time

delay (DTD); to evaluate the efficiency of these proposed methods. The proposed RKPCA

techniques are able to enhance the time and space computation of KPCA and contribute

better monitoring performance.

Keywords: Fault detection, Principal component analysis, Kernel PCA, Reduced KPCA,

Redundancy, Euclidean distance, Correlation, Independence, Cement rotary kiln, Ten-

nessee Eastman process, Computation time, Computation space
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RESUME

Les méthodes de détection et de diagnostic de défauts sont importants dans les processus

industriels. Elles assurent le fonctionnement du processus et réduisent ses coûts de main-

tenance. La mise en œuvre de mécanismes de détection et de diagnostic de défauts est

appelée surveillance de processus. En raison de la taille et de la complexité des processus

industriels, les méthodes statistiques multi-variées trouvent une large application dans la

surveillance de processus. Les méthodes les plus populaires sont l’analyse en composantes

principales (ACP ou PCA en anglais pour principal component analysis), pour les pro-

cessus linéaires et l’analyse des composants principaux du noyau (KPCA) pour ceux non

linéaires. Les défauts sont détectés avec des indices de détection de défaut qui déclenchent

des alarmes lorsqu’un index a dépassé sa limite de contrôle. Le principal défi de la méthode

de détection et de diagnostic de défauts basée sur KPCA est le temps de calcul et l’espace

de stockage élevés lorsque la taille des données d’apprentissage augmente. La taille de la

matrice du noyau développée dépend du nombre d’observations d’apprentissage. Ainsi,

elle nécessite O(n2) d’espace de stockage pour sa construction et pour laquelle O(n3) de

temps de calcul pour ses procédures d’eigen-décomposition.

Dans cette thèse, trois nouvelles méthodes ont été proposées pour traiter ces prob-

lemes. La première méthode vise à éliminer les observations redondantes dans l’ensemble

des données d’apprentissage en se basant sur les distances euclidiennes entre les observa-

tions, de sorte que deux observations ayant une distance euclidienne nulle sont considérées

comme similaires et l’une d’entre elles peut être éliminée. La deuxième méthode sup-

prime les observations corrélées et ne conserve que les observations représentatives non

corrélées pour construire un ensemble de données d’apprentissage réduit. La troisième

méthode réduit l’ensemble de données d’apprenti- ssage en éliminant les observations

dépendantes et en ne conservant que les observations indépendantes. Les ensembles de

données d’apprentissage réduits sont utilisés pour construire l’algorithme KPCA afin de

calculer les seuils des indices de défaut et de déclencher les alarmes lorsque l’indice vi-

ole son seuil. Les méthodes proposées sont appliquées à deux cas d’étude de processus

industriels : Le processus de four rotatif d’Ain El Kebira et le processus de Tennessee

Eastman. Les résultats obtenus sont comparés à ceux de la méthode KPCA ordinaire et

de différentes méthodes RKPCA, en termes de taux de fausses alarmes (FAR), de taux

de détection manquée (MDR) et de délai de détection (DTD), afin d’évaluer l’efficacité

des méthodes proposées. Les techniques RKPCA proposées sont capables d’améliorer le

calcul en temps et en espace de la KPCA et contribuent à une meilleure performance de

surveillance.
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 ملخص 

 

 يلعب ميدان اسكتشاف الأخطاء و تشخيصها دورا هاما في المجالي الصناعي, فهو المسوؤل عن التشغيل الآمن للعمليات 

 الصناعية و التقليل من تكاليف التشغيل و الصيانة. يطلق على بناء آليات استكشاف الاخطاء المبكرة و تشخصيها "مراقبة

 ساليب الإحصائية المتعددة, من أبرز الأساليب الاحصائية الشائعة هي تحليلالعمليات الصناعية" حيث تعتمد أساسا على الأ

للعمليات غير الخطية. في (KPCA)   للنواة ةالرئيسي المركباتتحليل ا للعمليات الخطية ، و (PCA)  الرئيسية باتالمرك

في وقت  KPCA  يتمثل العائق الرئيسي في طريقة اكتشاف الأخطاء وتشخيصها المستندة إلى .العملية الإحصائية مراقبة

الكبيران كلما زاد حجم بيانات التدريب. حيث يعتمد حجم مصفوفة النواة المطورة على عدد عينات   الحساب ومساحة تخزين

 .لإجراءات التحليل الذاتي )3nO( و وقت حساب   )2nO(الأمر خوازمية بمساحة تخزين لك يتطلبالتدريب. لذ

 

في هذه الأطروحة تم اقتراح ثلاث طرق جديدة لمعالجة المشكل المطروح. تهدف الطريقة الأولى إلى حذف العينات 

ث تعتبر أي عينتين بمسافة إقليدية صفرية متشابهة بين مجموعة بيانات التدريب بنا ءً على المسافات الإقليدية, حي المتشابهة

مرتبطة لإنشاء  غير الواحدة منهما. أما الطريقة الثانية فتزيل العيننات المرتبطة وتحتفظ فقط بالعيينات التمثيلية  ويمكن إزالة

موعة بيانات التدريب  بيانات تدريب مصغرة. في الطريقة الثالثة يتم حذف العيينات الغير مستقلة احصائيا من مج مجموعة

لحساب عتبات  KPCA  على المستقلة فقط. تسُتخدم مجموعات بيانات التدريب المصغرة لبناء خوارزمية و الحفاظ

عن الأخطاء من أجل إطلاق الإنذارات عندما يتجاوز أحد الموشرات العتبة الخاص به. لتقييم كفاءة هاته   مؤشرات الكشف

 فرن انتاج الاسمنت في عين الكبيرة وعمليةمليتيبن دراسيين صناعيتين: عملية تطبيقها على ع الطرق المقترحة تم

Tennessee Eastman ومقارنتها بطرق  RKPCAالمختلفة . 

 

 

 

وقت   ,للنواة ةالرئيسي المركبات تحليل ا و  ,ةالرئيسي باتالمرك تحليل, اسكتشاف الأخطاء و تشخيصها تاحية:الكلمات المف

فرن انتاج عملية , مستقلةالالعيينات , العيننات المرتبطة, المسافات الإقليدية, العينات المتشابهة, ومساحة تخزين, الحساب

 Tennessee Eastman. عملية, عين الكبيرة ,الاسمنت
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1
General Introduction

1.1 Background

In the last century, The field of fault detection and diagnosis (FDD) has seen an increas-

ing emergence due to the high development of modern industrial processes, demands for

product quality, and operation safety. So, it is required to build sophisticated and advanced

techniques that can quickly and correctly detect abnormalities and determine whether the

process is under healthy or faulty operation mode. The instantaneous detection of faults

ensures enough warning time for the fault diagnosis scheme to identify the source location

of the detected faults that occurred in the process. The quick detection and diagnosis of the

abnormalities prevent deterioration of the process behavior and avoid any long period repa-

rations. These techniques are classified into model-based and history-based fault detection

methods [1–3].

Model-based methods are heavily dependent on an explicit mathematical model of the

process and the analytic relations between the inputs and outputs to extract information

about the causes of faults [4–6]. Generally, these techniques are limited to small processes,

which their accurate mathematical model can be easily determined. In large-scale and

complex industrial processes, it is a challenging issue to acquire an accurate mathematical

process model [7]. Model-based methods mainly use Kalman filter [8], and state estimation

[9] to detect the abnormalities through generated residuals.

In the model-based techniques the high interactions between the variables, among time-

varying parameters and nonlinearities in large-scale industrial processes prevent these from

obtaining good monitoring performance [10]. On the other hand, the huge advancement in

measurement equipment and data storage materials gives data-driven methods the advan-

tage to monitor modern processes. They make use of process historian data to construct

an explicit model of the normal operation mode and detect by divergence the abnormal-
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ities and their root [3]. These techniques reduce the dimensionality of the process data

using machine learning techniques along with multivariate statistical methods to construct

a comprehensive model for the process.

Some well-known statistical techniques are Principal Component Analysis (PCA), Par-

tial Least Squares (PLS), Fisher Discriminant Analysis (FDA), and Independent Compo-

nent Analysis (ICA) [2,11,12]. Principal component analysis (PCA) was proposed in 1901

by Pearson [13] and developed by Hotelling [14]. It is a linear transformation that projects

the input data onto a new lower dimension space that captures the most effective variations

in the data.Since PCA is a linear technique, therefore, it does not take into consideration the

nonlinear relations revealed in industrial processes [15]. Thus, the monitoring performance

of industrial processes with high nonlinear correlations between variables degrades when

PCA technique is applied. Many techniques have been proposed to solve that issue. Kernel

PCA (KPCA) as a nonlinear generalization of the PCA is proposed by Scholkopf et al.

in [16]. KPCA maps the original dataset into a higher dimension (or infinite) feature space,

afterwards, standard PCA is performed in that feature space. Unlike Neural network based

techniques, KPCA solves an eigenvalue problem instead of solving a nonlinear optimiza-

tion problem [17, 18]. Process monitoring based on KPCA technique uses the same PCA

fault detection indices such as the Hotelling’s T 2 and Q statistics. The main challenge in the

KPCA based fault detection and diagnosis method is the high computation time and mem-

ory storage space whenever the size of the training data increases. The developed kernel

matrix size depends on the number of training observations. So, it requires O(n2) stor-

age space for its build and for which O(n3) computation time for its eigen-decomposition

procedures [19, 20]. To address these evidently related issues, many techniques have been

proposed. In [20], a new Reduced KPCA (RKPCA) is proposed, this method uses singular

value decomposition (SVD) to reduce KPCA. (SVD-RKPCA) method is proposed for on-

line monitoring of nonlinear processes. The SVD-RKPCA method consist of two phases

(offline and online). First It aims to find a reduced dataset by selecting the variables with the

highest projection variance to build an initial KPCA model(offline phase).Then it updates

the model by applying the SVD-KPCA technique online. A K-means clustering method

is used to extract a reduced number of training observations [21]. Although, it is able to

reduce the computation cost, however, it requires the number of clusters to be defined in

advance. Nevertheless, it doesn’t take into consideration the variation of parameters, so it

may lead to monitoring errors. Rosipal et al. have utilized expectation maximization (EM)

algorithm to solve the computational issue of KPCA although EM algorithm convergence

is not guaranteed to KPCA technique [22]. A kernel Hebbian algorithm was proposed by

Kim et al. which iteratively estimates the kernel principal components with only linear
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order memory complexity [23].

Zheng et al. have improved a version of KPCA based on the eigenvalue decomposi-

tion of a symmetric matrix. In this technique, the training dataset is divided into different

subsets, where each of them is handled separately. The method improves the time cost but

it consumes more memory space [24]. Zhang et al. have addressed the problem utilizing

techniques from stochastic optimization to solve kernel PCA with linear space and time

complexities per iteration [19].

1.2 Objectives

Since a large number of training observations lead to high time and space-consuming al-

gorithms and prevent the quick convergence of machine learning algorithms, removing

irrelevant observations could provide a computationally effective solution and may lead to

an improvement in the performance of the algorithm [10, 25]. Observation reduction is a

crucial step for accelerating KPCA model building without losing the process monitoring

performance. After the development of the big data field and high storage computers, the

number of observations collected is often massive thus dimension reduction techniques are

becoming more and more imperious to build an acceptable model with high accuracy. The

temptation to build a KPCA monitoring model using all collected observations is becom-

ing too hard due to high computational complexities. It is carefully required to reduce the

number of observations. The main objective of this thesis is to proposed new three algo-

rithms to reduce the training dataset size by removing the irrelevant observations and keep

the most relevant samples that can monitor the process with the same quality as the entire

training dataset.

1.3 Outline

Chapter 2 gives a background on the field of fault detection and diagnosis, It provides a

description of the different fault detection techniques ( model-based and data-driven). A

detailed explanation of data-driven is presented as well as the fault indices used to detect

whether the process is under a healthy or faulty state. In Chapter 3, PCA and KPCA meth-

ods are well presented. it gives the mathematical explanation of these techniques as well

as the notation used in their derivation. furthermore, it shows the limitations of PCA and

KPCA. where PCA cannot handle the processes that reveal nonlinear characteristics be-

cause PCA assumes that the process variables are linear correlated. meanwhile, KPCA

struggles with high time and space complexity to monitor the process with the high num-
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ber of observations. Chapter 4 presents the proposed Reduced KPCA algorithms used to

solve the high time and space consumption in KPCA. Three methods have been presented

to reduced the training dataset size. In chapter 5, The proposed RKPCA techniques are

validated and tested on two industrial processes. Ain El Kebira rotary kiln and Tennessee

Eastman. The results of the proposed RKPCA are summarized in tables and compared to

KPCA, and recently published RKPCA algorithms. The dissertation is closed with a gen-

eral conclusion where it summarizes all the discussed techniques and the obtained results

using these techniques to monitor industrial processes. In addition, the future work to de-

velop the proposed techniques and extend RKPCA techniques to monitor more processes

and enhance the performance.
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2
Literature review

2.1 Introduction

The thriving field of FDD and process monitoring (PM) is crucial to guarantee the good

performance and secure operation of industrial processes. During the last decade, high

advances have been made both in theory and application aiming to solve the problem of

process monitoring and fault detection utilizing newly developed tools involving algebraic

conceptions with probabilistic and statistical techniques [26]. This chapter presents the

different FDD techniques that have been developed and the FDD classes (model-based and

data-driven). Data-driven is more detailed mentioning the different statistical techniques

(PCA, PLS, ICA....).

2.2 Fault detection and diagnosis: State of art

PM plays an essential role in industrial processes, it assures the product quality and the

proper operation and reduces the damage of the processes. Safe operation of complex

industrial processes, such as oil and gas processes that demand sophisticated monitoring

of process variables to improve the productivity of these processes and, more crucially,

to avoid any catastrophe on any occasion of failure [27]. The world has seen a lot of

catastrophic incidents that have taken place in the past few decades in various chemical and

petrochemical plants. Some of these disastrous accidents are the Union Carbide accident

[28, 29], the Piper Alpha accident [30, 31], and the Al-Ahmedi (Kuwait) accident [32]. In

1984, The Union Carbide accident happened in India, where a leak of toxic gas caused over

3000 deaths and 400,000 injuries [28,29]. In 1988, 167 men were killed in Piper Alpha (an

oil production plant operated by Occidental Chemical in the North Sea) accident, leaving

only 61 survivors [30, 31]. Mina Al-Ahmedi accident in 2000 was caused by a failure in
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a condensate line in a refinery plant leading to 5 deaths and 50 injuring. The catastrophic

accidents make the monitoring of the industrial process intrinsic key to avoid all these

consequences and guarantee the safety of the humans and keep the profitable operation of

these plants [33].

Faults can occur in open as well as closed-loop controlled systems, and they have dif-

ferent types, magnitudes, and behaviors over time. Additive faults [34, 35] correspond to

unknown inputs acting on the process, those disturb the process outputs and are indepen-

dent of the known inputs. While multiplicative faults [36–38] also known as parametric

faults are variations in some process parameters which affect the process outputs depend-

ing on the magnitude of the known inputs [39]. In case of additive faults:

Y (t) = Y ∗(t) + ∆Y (t) = Y ∗(t) + f(t) (2.1)

and in case of multiplicative faults:

Y (t) = (p+∆p(t))U(t) = Y ∗(t) + f(t)U(t) (2.2)

Where Y ∗(t) is the free fault variable, U(t) is the input variable, Y (t) is the faulty

variable, and f(t) is the involuntary fault

Fig. 2.1 Types of faults in terms of behavior over time

In terms of their behavior over time, faults are generally classified into three types.

Abrupt faults [40–42] occur suddenly with a step-wise constant amplitude, these faults can

occur as a fixed bias or a random variation and can remain permanent for the rest of the

system operation or disappear after a certain transient stage. Incipient faults [43–45] on

the other hand start with lower negligible amplitudes which gradually increase over time,

these faults must be detected before they evolve towards their critical levels and reach

other process zones. Finally, intermittent faults [46–48] pose different characteristics and

challenges since they occur and vanish suddenly with different amplitudes during different

time stages. Figure 2.1 displays the different fault types.

Fault detection is an important field in process monitoring. Faults in industrial processes

can occur due to malfunctioning sensors or to abnormal changes in the process [3]. Sensor
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faults are usually caused by quick changes in a small number of process variables. on

the other hand, process faults are abnormal changes due to deviations in the process itself.

These faults are usually appraised by slow drifts across several variables. The monitoring

techniques should be accurate and quick in detecting abnormalities. Over the last decades,

many researchers have developed different FDD techniques [31, 32, 49, 50]. Generally,

These fault detection techniques can be labeled into two major categories: Model-based

techniques and data-driven techniques, Figure 2.2 presents the fault detection and diagnosis

techniques classes.

Fig. 2.2 Classification of Diagnostic Algorithms.

2.2.1 Model-based fault detection

Model-based techniques highly depend on the process model and the relationship between

variables in order to identify the abnormalities. Model-based methods use analytical rela-

tions between system inputs and outputs to extract information about possible faults that

may occur. Model-based uses residuals, which are the differences between the measured

and the model predicted value, these residuals are used as an indicator of the existence

or absence of faults [51, 52]. At normal conditions, the residuals indicate zero or close

to zero in cases of uncertainties or noise. On the other hand, the significant deviation of

the residuals from zero indicating the presence of a new condition that is distinguishable

from the normal faultless mode [51, 52]. The main model-based monitoring approaches

are the observer-based methods [53, 54], parity space approaches [55–57], and interval ap-

proaches [58]. Figure 2.3 represents a schematic diagram of model-based fault detection.
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Fig. 2.3 A general schematic of model-based fault detection.

2.3 Data-driven fault detection

For the case of large-scale industrial processes, building a complete and accurate process

model tends to be unfeasible which hence limits the performance of model-based FDD

methods making analytical redundancy techniques applicable only for small to medium-

size systems. Meanwhile, hardware redundancy methods pose many burdens in terms of

occupied space, increased complexity, and financial costs; Furthermore, a common fact

is that redundant components are also subject to faults and thus necessitate extra periodic

maintenance efforts. Signal processing based methods as well prove to be applicable in

modern systems but they are also restricted to few types of faults being known in some

common systems; Major limitations of signal-based methods are due to the required de-

pendency of the monitored index on its quality relevant variables or the studied fault on

its corresponding performance indicators. Making superior alternative solutions to the pre-

viously mentioned techniques, data-driven FDD methods started to become more popular

since the field of multivariate statistical process control (MSPC) was introduced in the
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1990s. In this direction, several methods are proposed in the literature and proved efficient

in FDD and PM in theoretical and experimental applications. Diverse methods are capable

of handling multivariate big data of different types and distributions, and several extensions

are further proposed.

Data-driven techniques use historical process data in order to extract the main features

of the process utilizing multivariate statistical techniques. Multivariate statistical tech-

niques are considered powerful tools that can compress data and reduce dimensionality

to retain essential information that is easier to be analyzed. they are also can handle noise

and correlation effectively extracting true information. PCA is based on an orthogonal de-

composition of the covariance matrix of the process variables along with directions that

explain the maximum variation of the data. The main purpose of using PCA is to find

factors that have a much lower dimension than the original data set which can properly

describe the major trends in the original data set.

PCA is a procedure used for a single data matrix, e.g., the matrix of the process variable

X. Oftentimes we also have an additional group of data, e.g., product quality variables Y

PLS method models the relationship between two blocks of data while compressing them

simultaneously. It is used to extract latent variables that not only explain the variation in

the process data X but also that variation in X is most predictive of the quality data Y. The

first PLS latent variable is the linear combination of the process variables that maximizes

the covariance between them and the quality variable.

FDA [59–63] method on the basis of classification and discrimination among classes;

Canonical variate (Correlation) analysis (CVA) [64–66]; and slow feature analysis (SFA)

[67–70] method that extracts the slow features according to their invariant levels and used

to provide representations for process operation during steady and dynamic states. These

methods have recently drawn increasing attention for their reliability and good performance

in PM and FDD. Theoretical and experimental applications of these methods range from

small-size systems [71–74], industrial processes [59, 75–77] and safety-critical processes

such as nuclear and aerospace industries [78–81]. Many nonlinear extensions of PCA

and PLS models were developed in the last decades [82–84]. These nonlinear techniques

utilize polynomials, splines, neural networks, etc., to build the latent variable relations

to the original measurement data. Where iterative solution methods are involved. The

kernel methods are first introduced and developed by Scholkopf et al. in [85], the kernel

techniques use linear computation methods to extract the latent variables instead of iterative

methods, thus they have been more attractive recently in process monitoring.
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2.3.1 Fault detection performance evaluation

The performance of any detection algorithm is evaluated in terms of many indicators the

most common indicators are:

• False Alarm Rate (FAR)(%): percentage of the healthy samples that are detected

as faulty.

FAR =
V iolated data

healthy data
× 100% (2.3)

• Missed Detection Rate (MDR)(%): percentage of faulty samples that are not de-

tected.

MDR =
Missed detection

faulty data
× 100% (2.4)

• Detection Time Delay (DTD): difference time between detection and occurrence

of a fault.

DTD = Td − Tf (2.5)

where Td is the detection time and Tf is the fault occurrence time.

2.4 Conclusion

In this chapter, the fundamental theory of fault detection and diagnosis has been provided.

The various methods used to detect faults have been described. The two main classes of

fault detection techniques are model-based and data-driven. Model-based fault detection

and diagnosis methods that depend on the mathematical model of the process are intro-

duced. model-based fault detection use observer-based, parity space approach, interval

approach to detect any abnormalities among the process. data-driven methods highly de-

pend on the historical data of the process with they use statistical and machine learning

techniques in order to build a comprehensive model of the process for fault detection and

diagnosis.

10



3
PCA and KPCA for fault detection

3.1 Introduction

This chapter presents the main concepts of PCA and the mathematical development PCA

model to built fault detection scheme. In addition, KPCA is introduced as nonlinear exten-

sion of PCA to monitor nonlinear processes. Finally, we present the drawbacks of KPCA

which suffers from high time and space computations.

3.2 Principal component analysis (PCA)

PCA is one of the most well-known multivariate statistical modeling techniques and is

widely used in various disciplines, such as in data compression, face recognition, filtering,

image analysis, and fault detection [86–90]. PCA can be extremely useful in quality control

applications because it allows one to transform a set of correlated variables to a new set

of uncorrelated variables that may be easier to monitor with control charts. In PCA, the

measurements of m dimension space (where m is the number of observed variables) are

linearly orthogonal projected onto a lower-dimensional space (principal component space

of dimension l < m) by maximizing the variances of the projections. Many versions of

PCA have also been developed, which include recursive PCA (RPCA) [89], multiscale

PCA (MSPCA) [91], moving window PCA (MWPCA) [92], multiway PCA [93], dynamic

PCA (DPCA) [94], and nonlinear PCA (NLPCA) [95, 96].

3.2.1 Modeling using PCA

PCA is the most utilized multivariate statistical technique, that project the original variables

into a new set of orthogonal variables, so that the first components that have the largest vari-

ance contain most information. Let X ∈ Rn×m be a normalized dataset with m variables
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and n observations.

X = [x1, x2, ..., xn]
T =


x1,1 ... x1,m

... . . . ...

xn,1 · · · xn,m

 ∈ Rn×m (3.1)

PCA can be performed through the eigenvalue decomposition of the covariance matrix of

Fig. 3.1 Illustration of PCA in 2D

X. First, the data matrix X is normalized to zero mean and unit variance, then the eigenvalue

decomposition is performed.

The covariance matrix is given as

C =
1

n− 1
XTX (3.2)

The covariance as represented in equation 3.2 is an unbiased estimator [11]. While the

biased estimator for the covariance is given by:

C =
1

n
XTX (3.3)

The covariance matrix of X can be decomposed as

C = PΛP T (3.4)

Where the matrix P ∈ Rm×m is the principal component loading vectors. While,
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Λ ∈ Rm×m is a diagonal matrix of the eigenvalues. The data matrix is given as

X = TP T (3.5)

where T is called the score matrix, and it is given by

T = XP (3.6)

The matrix P can be decomposed into

P =
[
P̂ |P̃

]
(3.7)

where P̂ ∈ Rm×ℓ contains the principal components, P̃ ∈ Rm×(m−ℓ) is the residual

components matrix and ℓ represents the number of retained principal components.

3.2.1.1 Principal components number selection

The number of retained principal components is still a matter of study, many methods have

been used to select the appropriate number of PCs.

3.2.1.1.1 Kaiser criteria Guttman-Kaiser criteria is introduced in 1954, and is still

the most used method to select the number of components in PCA. Kaiser criteria, also

known as k1, collects the components corresponding to those eigenvalues greater than 1.

k1 method first leads to good results. While other studies show that the k1 overestimates

the number of retained PCs. Furthermore, selecting components with singular values larger

than 1 is discussable, due to the fact singular value equals 1.01 is considered as significant

and informative while 0.99 component is not significant [97]. Another major problem was

reported by many studies, k1 always retains between 1
3

and 1
5

or 1
6

of the total components.

3.2.1.1.2 Scree Plot The scree test was first proposed in [98] as a method that consists

of plotting the eigenvalues of the covariance/correlation matrix in decreasing order then

exploring the resulting graph to determine the point where the last drop takes place and

the graph starts to be smooth. The reasoning behind this approach can be seen as if the

elbow point is dividing the important (major) components from the insignificant (minor)

components. This test is simple to apply, but it may be hard to interpret due to the fact

that a graphical method without any systematic rule may turns out to be highly subjective.

Furthermore, the graph itself might be misleading due to the ambiguity of the elbow due

to the gradual sloop of the graph or the existence of more than one elbow [11, 99, 100].
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Usually, a cumulative eigenvalue proportion graph is used in parallel with the scree test

in order to increase the confidence in the selection made by the method. The test can be

carried out in terms of the logarithmic eigenvalue test (LEV), this test does extend the scree

test by plotting the logarithms of the eigenvalues log(λi)vsi instead of the eigenvalues.

This approach can increase the interpretability of the plot. In a comparative study carried

in [99], 90% of scree test estimation errors were found to be underestimates.

3.2.1.1.3 Cumulative Percent of Variance (CPV) It is well known that the variance

is a good measure for the importance of a given principal dimension and for how much

information could exist in that dimension compared to the others. Thus, retaining a number

of components that corresponds to a certain percentage of the total variance is reasonable.

In This dissertation, (CPV) is used. CPV keeps the first ℓ principal components that have

a sum of variances is greater than a certain percentage of the total variance(Usually, a

percentage between 80− 85%).

CPV (ℓ) =

∑ℓ
i=1 λi∑m
i=1 λi

× 100 (3.8)

The matrix T is decomposed into

T =
[
T̂ |T̃

]
(3.9)

T̂ ∈ RN×ℓ represents the principal scores and T̃ ∈ RN×(m−ℓ) is the residual scores.

3.2.2 PCA-based fault detection

The common statistics used to measure the variation in principle and residual subspaces,

called: the Hotelling T 2 statistic and Squared Prediction Error (SPE) Q [87].

3.2.2.1 The Hotelling’s T 2 statistic

T 2 represents the variability in the principle components subspace.

T 2 = xP̂Λ−1P̂ TxT (3.10)

Where x is a new data sample vector.

The upper limit that the index T 2 should be below to have the normal operation is

defined as

T 2
α =

(N2 − 1) l

N (N − ℓ)
Fα (ℓ,N − ℓ) (3.11)
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with α be the significant level and Fα (ℓ,N − ℓ) Fisher-Snedecor distribution value corre-

sponding to ℓ and N − ℓ degrees of freedom.

3.2.2.2 Squared Prediction Error (SPE)

The Q is the norm of residual space, and it is given as

Q = xP̃ P̃ Tx = ∥x̃∥ (3.12)

The upper control limit of Q is defined as

Qα = θ1

[
zαh0

√
2θ2

θ1
+ 1 +

h0θ2 (h0 − 1)

θ21

] 1
h0

(3.13)

Where θi =
∑m

j=ℓ+1 λ
i
j i = 1, 2, 3 , h0 = 1− 2θ1θ2

3θ23
, and zα is the value of standard normal

distribution corresponding to (1− α) confidence level.

3.2.2.3 Combined Index φ

The combined index is proposed by Yue and Qin in [101], it combines the SPE and T 2

indices. φ is given as:

φ =
T 2

T 2
α

+
Q

Qα

(3.14)

3.2.3 PCA drawback

In PCA, it is assumed that the process variables are linearly correlated. Meanwhile when

a process shows nonlinear characteristics, a linear PCA model might not provide proper

monitoring performance. In order to address this problem, many nonlinear PCA extensions

have been developed. Kramer has proposed a nonlinear PCA based on an auto-associative

neural network [82]. while a nonlinear PCA which combines principal curve and neural

networks is proposed by Dong et al. in [83]. Other nonlinear PCA techniques have been

suggested by Cheng et al. [102]; Hiden et al. [103]; Jia et al. [104]; Kruger et al. [105].

One of the most effective methods is kernel principal component analysis (KPCA),

introduced by Schölkopf et al. [16], It maps observations from the original space to a higher

dimensional feature space where PCA is performed. KPCA shows a successful monitoring

results in process monitoring [15,44,87,106]. The detection of abnormalities using KPCA

is performed using the same statistical fault indices T 2, Q, and combined index φ [107].
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3.2.4 Limitations of data-driven fault detection

Being heavily based on process data, MSA FD methods performance is deteriorated due to

noisy and inaccurate measured data. Usually, collected process data is skewed, corrupted

by noise, including some incorrect measurements and errors, incomplete with missing sam-

ples, and does not follow an exact distribution [108]. As a direct result, several drawbacks

are met in the design and application stages of these methods. The first step in data-driven

methods is the choice of an informative set of process variables, carrying relevant informa-

tion about process behavior and faults symptoms. Data is acquired from all interconnected

process stations and unit operations with an appropriate sampling time according to the pro-

cess dynamics. Collected process data generally undergoes pre-processing and it is used

in both statistical learning and parameters tuning while constructing a statistical process

model as well as projection and generation of statistics which act as faults indices, faults

are here detected through the evaluation of resulting statistics using some control limits

(thresholds) defined as parameters in a statistical learning stage. Theoretically speaking

most MSPM FD approaches rely on the assumption that the process is operating under

ideal conditions, and its collected multivariate data follows an exact distribution. Typically,

such conditions do not exist in engineering systems. Data imperfectness and outliers raise

the difficulty of extracting the statistical properties of the analyzed signals of a given in-

dustrial process making it difficult to define the best random phenomena associated with

signals under study. This consequently affects the construction and analysis of (i) statistical

model; (ii) calculated parameters including thresholds, and (iii) generated statistics as well

as their evaluation. Most of the data-driven FD methods in general and MSA methods, in

particular, are based on a statistical model which is trained through collected sets of pro-

cess data in parallel with its parameter calculations and tuning; Accordingly, imperfectness

in training data sets is directly mapped into imperfectness of the trained model and its pa-

rameters which are of invaluable importance in all FD and PM stages affecting the whole

performance. Moreover, online FD is based on the evaluation of the generated statistics

obtained through projections of instantaneous measured data; Data outliers sequentially

cause several outliers in the generated statistics acting as the process fault indicators and

consequently affect the FD procedure causing false and missed alarms. More importantly,

the statistical control limits in all MSA FD methods are calculated based on both the trained

model and projected process data of normal operation. It is worth mentioning that these

parameters are hence extremely sensitive to data outliers, while they play a crucial role as

thresholds in statistics evolution and decision making about the process operation status

and its faults. Such severe shortcomings due to data imperfectness either in the design
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or monitoring stages of FD methods lead to inaccurate statistical information extraction,

uncertain parameters tuning, as well as erroneous decision-making problems. Major draw-

backs are reflected in the overall FD performance causing extensive amounts of missed

and/or false alarms, these deteriorate the monitoring performance and degrade both FD

sensitivity and robustness. Besides corrupted data caused shortcomings, a major drawback

can be seen in the last but not less important stage of FD methods design; The evaluation

of generated statistics is based on a fixed threshold in most FD tools, this establishes a

high degree of trade-off between FD robustness and sensitivity. This degree, however, is

directly controlled through fixed thresholds calculated based on a given significance level;

If the fixed detection threshold level is set too high, there will be fewer false alarms, but no

alarms are activated upon an actual fault occurrence, and this will inhibit the detection. If it

is reversely set too low, the large number of false alarms will cause unidentified detection.

3.3 Kullback–Leibler divergence(KLD)

KLD, DKL (also called s information divergence or relative entropy), measures the distance

between two density distributions [109]. Applications include characterizing the relative

(Shannon) entropy in information systems, randomness in continuous time-series, and in-

formation gain when comparing statistical models of inference. In contrast to variation of

information, it is a distribution-wise asymmetric measure and thus does not qualify as a

statistical metric of spread – it also does not satisfy the triangle inequality. In the simple

case, relative entropy of 0 indicates that the two distributions in question have identical

quantities of information.

Consider two probability distributions P and Q. where, P is considered as the data,

the observations, or a measured probability distribution. meanwhile distribution Q is a

theory, a model, a description, or an approximation of the probability distribution P . KL

divergence can be directly defined as the mean of the log-likelihood ratio and it is the

exponent in large deviation theory [110]. The KL divergence is used in many fields of

speech and image recognition, such as determining the similarity of two acoustic models

[111–113], computing the best match using histogram image models, clustering of models,

and optimization by minimizing or maximizing the KL divergence between distributions

[114–116].

The divergence satisfies three properties, hereafter referred to as the divergence proper-

ties:

1. Self similarity: D(P ∥ P ) = 0.
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2. Self identification: D(P ∥ Q) = 0 only if P = Q.

3. Positivity:D(P ∥ Q) ≥ 0 for all P , Q.

For discrete probability distributions P and Q defined on the same probability space,

X , the relative entropy from Q to P is defined to be

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3.15)

which is equivalent to

DKL(P ∥ Q) = −
∑
x∈X

P (x) log

(
Q(x)

P (x)

)
(3.16)

In other words, it is the expectation of the logarithmic difference between the probabil-

ities P and Q, where the expectation is taken using the probabilities P . Relative entropy

is defined only if for all x, Q(x) = 0 implies P (x) = 0 (absolute continuity). When-

ever P (x) is zero the contribution of the corresponding term is interpreted as zero because

limx→0+ x log(x) = 0. For distributions P and Q of a continuous random variable, relative

entropy is defined to be the integral

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (3.17)

where p and q denote the probability densities of P and Q.

3.4 Kernel PCA (KPCA)

3.4.1 Kernel trick

The kernel trick seems to be one of the most confusing concepts in statistics and machine

learning. It is introduced to deal with linearly inseparable data is to project it onto a higher

dimensional space where it becomes linearly separable [117–124]. Let us call this nonlinear

mapping function ϕ onto higher dimension space, so that the mapping of a sample x of

dimension n can be written as x → ϕ(x) where ϕ(x) of dimension h. Now, the term

“kernel” describes a function that calculates the dot product of the images of the samples x

under ϕ. An important property of the feature space is that the dot product of two vectors

ϕi and ϕj can be calculated as a function of the corresponding vectors xi and xj

ϕT
i ϕj = k(xi, xj) (3.18)
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The function k(., .) is called the kernel function, and there exist several types of these

Fig. 3.2 Feature space mapping.

functions. Some popular kernel functions are polynomial functions, radial basis (Gaussian)

functions, and Sigmoidal functions [107, 125–129]. To illustrate how a nonlinear mapping

to an expanded dimensional space can change a nonlinear distribution to a linear distribu-

tion, the following illustrative example is given: suppose we have a nonlinear process with

two variables, x1 and x2, and there are two data sets; one set has normal measurements

and the other one faulty measurements. Figure 3.3 shows the plots of these data sets; the

normal measurements are marked with blue dots and the faulty ones with orange dots. In

this case, it is impossible to linearly separate the normal data from the faulty one.

After the following transformation:

ϕ(X) = ϕ

(
x1

x2

)
= i

 x2
1√

2x1x2

x2
2

 (3.19)

Figure 3.4 shows the mapped data onto 3D space. it is really easy to separate the

normal and faulty measurements with linear PCA. Therefore, even though the original

data is nonlinear in a bi-dimensional space, its map to a tri-dimensional space is linear.

Furthermore, data becomes linearly separable (by a 2-d plane) in 3-dimensions.

The kernel trick provides a solution to the non-linearly separated data problem. The

“trick” is that the kernel method represents the data only through a set of pairwise similarity

comparisons between the original data observations x (with the original coordinates in
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Fig. 3.3 Data in 2D dimension space

Fig. 3.4 Data mapped into 3D dimension space

the lower dimensional space), instead of explicitly applying the transformations ϕ(x) and

representing the data by these transformed coordinates in the higher dimensional feature

space.

higher-dimensional transformations can allow us to separate data in order to make clas-

sification predictions. It seems that in order to train KPCA, operations of the higher di-
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mensional vectors in the transformed feature space. kernel function accepts inputs in the

original lower-dimensional space and returns the dot product of the transformed vectors in

the higher dimensional space.

3.4.2 Kernel function

There are several kernel functions that are used in KPCA algorithm, the commonly used

kernel functions are

• Polynomial Kernel:

K(x, y) =< x, y >d (3.20)

• Sigmoid Kernel:

K(x, y) = tanh(β0 < x, y > +β1) (3.21)

• Radial basis Kernel (gaussian):

k(x, y) = exp

[
−∥x− y∥2

2σ2

]
(3.22)

The gaussian, or radial basis, a kernel function is used in this dissertation; The Gaussian

kernel function is given as

k(xi, xj) = exp

[
−(xi − xj)

T (xi − xj)

2σ2

]
(3.23)

where σ is called the kernel parameter or the radius of the kernel function. The value of

the kernel parameter affects the fault detection performance. selection of a small value of

σ yields kernel function very small or close to 0; while, a very large value of this parameter

leads to kernel function very close to 1.

3.4.2.1 Kernel parameter selection

Since the kernel parameter value is a key value in the fault detection scheme. It is very

important to select an appropriate value in order to make FDD scheme performs well.

Many methods are proposed to compute the value of σ. One of the most recommended

techniques is proposed in [130]. This technique aims to select the parameter value as the
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average minimum distance between two points in the training set.

σ2 = c
1

N

N∑
i=1

mini ̸=jd
2(xi, xj) (3.24)

where c is user-defined parameter, d2(., .) is the squared distance between two training

observations, and N is the number of observations.

3.4.3 KPCA formalization

KPCA main concept is to map the input space onto higher dimension feature space H
through a nonlinear function Φ where it can easily extract features.

Φ : xi ∈ Rm → Φ (xi) ∈ Rh (3.25)

The covariance of data in the feature space ΣF is given as:

ΣF =
1

n
X TX =

1

n

n∑
j=1

Φ(xj) Φ(xj)
T (3.26)

Where it is assumed that
∑n

j Φ (xj) = 0 . ΣF can be diagonalized by eigenvalue decom-

position as

λV = ΣFV (3.27)

Where λ represents all the eigenvalues and V denotes all eigenvectors.

Substituting Eq 3.26 in Eq 3.27 yields

ΣFV = (
1

n

n∑
j=1

Φ(xj)Φ(xj)
T )V (3.28)

=
1

n

n∑
j=1

< Φ(xj), V > Φ(xj) (3.29)

All solution of V lie in the span of feature space. So, there exist coefficients αi i =

1 . . . n such that V =
∑n

i=1 αiΦ(xi) thus

λ
n∑

i=1

αi < Φ(xk),Φ(xi) >=
1

n

n∑
j=1

αi < Φ(xk),
n∑

j=1

Φ(xj) >< Φ(xj),Φ(xi) > (3.30)

The kernel trick is introduced to make the computation of the inner product in implicitly.
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Ki,j =< Φ(xi),Φ(xj) >. so Eq 3.30 can be written as

λnKα = K2α (3.31)

such that α = [α1 . . . αn]. and

α = XV (3.32)

K =


ϕT
1 ϕ1 ... ϕT

1 ϕn

... . . . ...

ϕT
nϕ1 · · · ϕT

nϕn

 =


k(x1, x1) ... k(x1, xn)

... . . . ...

k(xn, x1) · · · k(xn, xn)

 (3.33)

so we have now

λnα = Kα (3.34)

from Eq 3.34 it is clear that α and λ are an eigenvector and eigenvalue of K, respectively.

We multiply eq.3.32 by X TTo solve V .

X Tα = X TXV = λV (3.35)

So

V = λ−1X Tα (3.36)

Now in order to determine αi and λi we first eigen-decompose Eq3.34. Then we use Eq

3.36 to get vi
αT
i αi = vtiX TX vi = viλivi (3.37)

Therefore, αi should have a norm of
√
λi.

3.4.4 KPCA fault detection

For a given new sample x, the same fault indices have been used in PCA to detect abnor-

malities.

The kernel scores are given by:

tj =< vj,Φ(x) >=
n∑

i=1

αj
i < Φ(xi),Φ(x) > (3.38)
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where j = 1 . . . l where l is the number of retained components.

Q = ||Φ(x)− Φ̂l(x)||2

=
n∑

j=1

t2j −
l∑

j=1

t2j (3.39)

The control limit of Q is given as

Qα = gχ2
h,α (3.40)

where g = c
2µ

and h = 2m2

c
. µ and c represent the mean and variance of Q, respectively.

The T 2 is defined as:

T 2 = tTΛ−1t (3.41)

The control limit of T 2 is defined as:

T 2
α =

(n2 − 1) l

n (n− l)
Fα (l, n− l) (3.42)

with α is a significant level and Fα (l, n− l) Fisher-Snedecor distribution value correspond-

ing to l and n− l degrees of freedom.

The combined index φ, which combines the previous indices, is given as:

φ =
Q

Qα

+
T 2

T 2
α

(3.43)

The control limit is given as

φα = gX 2
h,α (3.44)

where

g =

l
(T 2

α)
2 +

∑n
i=l+1

λ2
i

Q2
α

(n− l)( l
T 2
α
+
∑n

i=l+1
λi

Qα
)

(3.45)

and

h =
( l
T 2
α
+
∑n

i=l+1
λi

Qα
)2

l
(T 2

α)
2 +

∑n
i=l+1

λ2
i

Q2
α

(3.46)

3.4.5 KPCA drawbacks

KPCA is a nonlinear PCA technique that can efficiently compute principal components

(PCs) in high-dimensional feature spaces using integral operators and nonlinear kernel

functions [16]. Despite the recent reported KPCA-based monitoring applications and good

monitoring results, the following problems arise: first, the identification of a KPCA mon-
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itoring model requires the storage of the symmetric kernel matrix (computation time in-

crease with the number of samples); second, the fault isolation is a much more difficult

problem in nonlinear PCA than in linear PCA [96] and the monitoring model is fixed which

may produce false alarms if the process is naturally time-varying. The next chapter pro-

poses new methods to solve the issue of the high time and space complexity of KPCA.

3.5 Conclusion

The conventional PCA is introduced in this chapter, the formalization of PCA and the math-

ematical description is given, it is shown that PCA works well in linearly correlated vari-

ables while it wont perform well in the datasets that show nonlinear characteristics. Then

KPCA method is introduced as solution to the nonlinearity issue. Mathematical descrip-

tion, different kernel functions, kernel trick, KPCA based fault detection are illustrated.

Finally, it is shown that KPCA struggles with high number of observations, it has high

computational time and space compared to PCA and other FDD techniques.
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4
Reduced KPCA algorithms

4.1 Introduction

This chapter presented the proposed RKPCA methods to solve the high time and space

complexity of ordinary KPCA. Three methods have been presented and discussed to ad-

dress the issue. The first method is used to reduce the training dataset size based on Eu-

clidean distance between training observations to eliminate similar observations. The sec-

ond method reduces the correlated observations among the training dataset to remove the

correlated observations. The third method aims to get rid of the statistically dependent

observations from the original dataset, cosine pair-wise distance is used to determine the

dependency among the observations. The three methods build a reduced dataset on which

the conventional KPCA is applied. Each of these methods requires a selection of thresh-

olds (similarity, correlation, and independence thresholds) thus loss functions are presented

to select the appropriate threshold. Each loss function is presented the monitoring perfor-

mance versus the threshold of each method.

4.2 Reduced KPCA based Euclidean distances

4.2.1 Similarity and Euclidean distance

Let X ∈ RN×m be the normalized data matrix with N observations and m variables. The

Euclidean distance between two different rows of the data matrix X is given by

di,j = ∥xi − xj∥2 i = 1, ..., N ; j = 1, ..., N ; i ̸= j (4.1)

Consequently, N(N−1)
2

pairwise Euclidean distances are obtained for that training data

matrix X . So, the further apart the two observations are, the more dissimilar they are
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and the bigger the distance between them is. The more similar the observations are, the

closer they are and the smaller the distance between them is. Thus, the pairwise observa-

tions, that are quite similar in term of Euclidean distance, provide the same information and

their incorporation in the training data set add an extra computation and memory require-

ments weight to the KPCA-based monitoring scheme. For this, only one representative and

non-redundant observation will be maintained. Accordingly, we obtain a reduced training

dataset of size r (r << N) on which KPCA model will be built.

Ideally, zero Euclidean distance means that the concerned pairwise observations are

totally similar. In the fact, the absolute similarity is unachieved in a practice world due to

the noise and uncertainties in measurement devices. So, it is important to select a range of

similarity from zero to a given similarity threshold value β. Hence, all pairs of observations

with Euclidean distance within this range will be considered similar. The observations xi

and xj are considered redundant and one of them will be removed from the original training

dataset if their corresponding Euclidean distance satisfies:

di,j ≤ β (4.2)

Algorithm 1: RKPCA based Euclidean distance algorithm
Offline Phase

1. Given the input data matrix X ∈ RN×m

2. Normalize the input data matrix X
3. Compute the Euclidean distances di,j of the normalized data
4. Fix the redundancy threshold β based on the Loss functions presented

in Section 4.6.1
5. Construct the reduced data matrix Xred using Algorithm 2.
6. Normalize the reduced data matrix Xred.
7. Apply KPCA algorithm to Xred.
8. Get the control limits of the fault detection indices.

Online Phase
1. Normalize test data using the mean and standard deviation obtained

from the reduced dataset in step 6 of the reduced training data
2. Build The reduced test kernel matrix
3. Compute T 2 , Q and φ
4. Compare T 2 , Q and φ with their corresponding thresholds
5. Make a decision ( Fault or no Fault)

Algorithm 2 represents a pseudo-code of redundant observations removal to reduce

the size of the training dataset. The different steps of the proposed RKPCA scheme are

illustrated in Fig. 4.1.
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Fig. 4.1 RKPCA-ED algorithm flowchart
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Algorithm 2: RKPCA-ED training dataset reduction
Result: Xred ∈ Rr×m

Init. X ∈ RN×m ;
for i = 1 to N − 1 do

for j = i+ 1 to N do
di,j = ||xi − xj||2 ;
if di,j ≤ β then

Remove observation xj from X;
end

end
end
Xred = X ;

4.3 Reduced KPCA based correlation

Algorithm: The proposed RKPCA-corr

Offline Phase
1. Given the input data matrix X ∈ RN×m.
2. Normalize the input data matrix X .
3. Compute the correlation between observations.
4. Select the optimal correlation threshold γ using a loss function.
5. Eliminate observations that have correlation between them greater or

equal to γ to build a reduced dataset Xred ∈ Rr×m.
6. Normalize reduced training dataset Xred.
7. Build the reduced kernel matrix Kred ∈ Rr×r.
8. Get the control limits of the fault detection indices.

Online Phase
1. Normalize test data using the mean and standard deviation obtained

from the reduced dataset size in step6 (offline phase).
2. Build The reduced test kernel matrix.
3. Compute T 2 , Q and φ
4. Compare T 2 , Q and φ with their thresholds.
5. Make decision ( Fault or no Fault).

The training data mainly contains highly correlated observations that surely provide

the same monitoring information and just add extra computation weight to the training

algorithm. Thus, applying KPCA method directly will be a time and space-consuming

matter [131].

In this work, it is aimed to reduce the size of a training dataset to overcome the ad-
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Fig. 4.2 RKPCA based correlation algorithm flowchart

dressed issues. A new reduced KPCA (RKPCA) algorithm, that can effectively reduce

training dataset size and improve the monitoring performance, has been proposed. The

idea behind the proposed RKPCA algorithm is to reduce the highly correlated observations

and keep only the uncorrelated samples.

RKPCA algorithm consists of three phases. The first phase is the reduction of the

dataset size by computing the correlation between each two observations and sorting the

correlation coefficients in decreasing order. Given the correlation matrix:

ρ =
1

n− 1
XXT =


cor(x1, x1) ... cor(x1, xN)

... . . . ...

cor(xN , x1) · · · cor(N,N)

 ∈ RN×N (4.3)
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where cor(xi, xj) represents the correlation between normalized observations xi and xj .

The correlation coefficients are now varying from −1 ≤ cor(xi, xj) ≤ 1. To avoid

the negative sign, the absolute value is taken so 0 ≤ cor(xi, xj) ≤ 1 high correlated

observations have a correlation near to 1. To eliminate the high correlated observations a

correlation threshold γ is proposed, so any observations that have cor(xi, xj) ≥ γ should

be represented with one sample in the original training dataset building a reduced dataset

with a size of r observations where r << N . The correlation threshold is selected as one

of the previously sorted coefficients based on the loss function presented in section 4.6.2.

The second phase is building RKPCA algorithm using the reduced training dataset to

construct the reduced kernel matrix of r × r size. The reduced kernel matrix consumes

less memory and requires less computational time to obtain eigenvalues and eigenvectors

in order to determine the fault indices thresholds.

The last phase is the online phase, where any new observation is detected whether it

is healthy or faulty. Using the reduced kernel matrix, and the eigenvalues and eigenvector,

fault indices for this new sample are computed and compared to the previously computed

thresholds so if any index has exceeded its threshold a fault is detected. Figure 4.2 presents

the proposed RKPCA technique flowchart.

4.4 Reduced KPCA based cosine

4.4.1 Orthogonality vs Independence

Let X and Y be two random variables, it is said that X and Y are uncorrelated if their

covariance is equal to zero.

CX,Y = E{(X − µX)(Y − µY )} (4.4)

where E{.} represents the expectation of a given random variable, E{X} = µX , and

E{Y } = µY The previous equation can be expanded to:

CX,Y = E{XY } − E{X}E{Y } = E{XY } − µXµY (4.5)

The correlation between random variables X and Y is given as

ρX,Y =
CX,Y

σXσY

(4.6)
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where σX and σY are the standard deviations of X and Y , respectively. For uncorrelated

X and Y means that CX,Y = 0, ρX,Y = 0, and E{XY } = E{X}E{Y }.

Theorem 4.4.1: Orthogonality

Two random variables are said to be orthogonal if E{XY } = 0 so if X and Y are

uncorrelated, (X − µX) and (Y − µY ) are orthogonal.
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Fig. 4.3 3D plot for the cosine similarity of 4 observations

Theorem 4.4.2: Statistic independence

If two random variables are independent, then they are uncorrelated. Thus any or-

thogonal random variables are statistically independent.

4.4.2 Cosine similarity

Cosine similarity measures the similarity of two vectors. It computes the cosine of the

angle between them. The cosine value is between −1 to 1 for an angle −π ≤ θ ≤ π. It

judges the orientation of two vectors regardless of their magnitudes. The cosine similarity

is equal to zero for orthogonal vectors.

cos(θ) =
< X · Y >

||X||||Y ||
(4.7)

Two independent random variable vectors are said to be orthogonal if they have 90°

angle between them. Thus the cosine similarity is used to determine the statistical depen-

dency between variables. Figure. 4.3 displays an example of the cosine similarity of 4

observations in 3D space. Cosine pairwise distance γ equals to one minus cosine similar-
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Fig. 4.4 Independence interval

ity. It is used as a metric to determine how similar two observations are, based on the angle

between them. The values of cosine pairwise are 0 ≤ γ ≤ 2.

4.4.3 Dataset reduction

The main drawback of the conventional KPCA algorithm is the high computational com-

plexity that extremely increases with the number of observations. It requires a space

complexity of O(N2) to build the kernel matrix and time complexity of O(N3) to eigen-

decompose that kernel matrix. This is a time-consuming matter especially with the modern

complex industrial processes that demand a large number of training observations. The aim

of this work is to propose a novel RKPCA algorithm that is able to solve the high compu-

tation complexity of conventional KPCA techniques and providing a good. The collection

of industrial datasets is always vulnerable to noise and uncertainties that affect the quality

of that data which leads to slow down KPCA algorithm and deteriorates the monitoring

performance and affects the production quality and the safety of the process.

The proposed RKPCA will extract the statistically independent observations and elim-

inates the statistically dependent observations that surely provide the same information

and just rises the computation weight of the training algorithm in order to build a reduced

dataset to reserve the same quality as the original dataset to develop an appropriate KPCA.

Cosine pairwise distance is used to determine the independent observations of the train-

ing dataset.

Given the cosine pairwise matrix:

Γ =


γ(x1, x1) ... γ(x1, xN)

... . . . ...

γ(xN , x1) · · · γ(xN , xN)

 ∈ RxN×xN (4.8)

where γ(xi, xj) = 1 − cos(θxi,xj
) is the cosine pairwise of xi and xj , that have angle of

θxi,xj
between them.

Thus, any two observations that have a cosine pairwise distance equal to 1 are inde-

pendent. and they will be kept as training observations while the dependent ones will be

eliminated. However, due to the high noise and measurement uncertainties, the independent
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observation will not have exactly 90° angle between them so the cosine pairwise distance

will not exactly equal to 1. To solve that issue, A interval of independence ϵ should be taken

around 1 to included the noisy independent samples. So any observation xi and xj that sat-

isfy 1 − ϵ ≤ γ(xi, xj) ≤ 1 + ϵ are considered independent observation. Fig. 4.4 shows

an example of independence interval around 1. In the proposed RKPCA, the selection
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Fig. 4.5 RKPCA Based Cosine algorithm flowchart

of independence interval ϵ that determines the independent observations is a challenging

task. If ϵ is taken to be equal to 0 it would select only observations that have pairwise

cosine distance γ = 1 so it will eliminate independent observations that may be considered

dependent due to the uncertainties Thus it leads to ignoring important information. Also

taking a large interval will include many dependent observations, as a result, it won’t reduce

enough observations. Figure 4.5 presents a flowchart of RKPCA algorithm. The selection

of an appropriate value of ϵ is based on the monitoring performance. a multi-objective loss
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function will be used to evaluate the monitoring performance versus ϵ.

Algorithm 3: RKPCA based cosine training dataset reduction
Result: Xred ∈ Rr×m

Init. X ∈ RN×m ;
for i = 1 to N − 1 do

for j = i+ 1 to N do
γ(xi, xj) = 1− cos(θ1,2) ;
if γ(xi, xj) ≥ 1± ϵ then

Remove observation xj from X;
end

end
end
Xred = X ;

4.5 Time and space complexity of RKPCA

The analysis of any algorithm should take into consideration the computation time and

memory consumption that the algorithm requires to be executed. The developed RKPCA

techniques time complexities are summarized in Tables 4.1 and .

The analysis of RKPCA approach time complexity shows that is an algorithm of O(r3+

N2), where N is the number of original dataset observation and r is reduced dataset number

of observations. So reducing training data size to r < N2/3 will lead to time complexity of

O(N2) otherwise it will be cubic time complexity O(r3). In worst case, it is O(r3), while,

in the best case, is O(r3). the space space complexity is O(r2) where r << N . It is clear

that in the worst case the complexity is similar to the ordinary KPCA algorithm but the

reduction of the number of observations will improve computational time ( the execution

Table 4.1 RKPCA approach time complexity analysis

Method Cost
RKPCA Inti.: Training data X ∈ RN×m

Begin:
Reduce training data Xr ∈ Rr×m N2

Kr = k(xi, xj)|i,j=1...r r2

eigendecompose Kr = P̂rΛ̂P̂
T
r r3

Compute T 2 , Q and φ r
Compute T 2

α , Qα and φα r
End

Total O(N2 + r3 + r2 + 2r) = O(r3 +N2)
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time taken by the algorithm) and memory space amount required to store the kernel matrix,

while in the best case, the time complexity will be a squared. As space complexity, RKPCA

comes with O(N2) and KPCA has O(r2). It is clear that both algorithms have the same

complexity. Although, reducing the number of training observation can improve the storage

amount.

4.6 Multi-objective function optimization

In mathematical terms, a multi-objective optimization problem can be formulated as:

min
x∈X

(f1(x), f2(x), . . . , fk(x)) (4.9)

where the integer k ≥ 2 is the number of objectives and the set X is the feasible set of

decision vectors, which is typicallyX ⊆ Rn but it depends on the n-dimensional appli-

cation domain [132, 133]. Multi-objective design optimization have been implemented in

engineering systems in many applications [134–136]. Scalarizing a multi-objective opti-

mization problem is an a priori method, which means formulating a single-objective opti-

mization problem such that optimal solutions to the single-objective optimization problem

are Pareto optimal solutions to the multi-objective optimization problem [135, 136]. In

addition, it is often required that every Pareto optimal solution can be reached with some

parameters of the scalarization. With different parameters for the scalarization, different

Pareto optimal solutions are produced. A general formulation for a scalarization of a mul-

tiobjective optimization is given as:

min
x∈X

k∑
i=1

wifi(x), (4.10)

where the weights of the objectives wi > 0 are the parameters of the scalarization.

The selection of reduced training data set will be based on the minimization of the

monitoring performance in terms of FAR, MDR, and DTD. Now, we define our multi

objective that sums the three previous fault indices as one function. To select the weighting

factors we take the previous studies results and we compute the average FAR as w1, the

average MDR as w2, and the average DTD as w3. Also it is recommended to normalize

all the indices so DTD is normalized as follows: DTDn = DTD
faulty samples

× 100

F1(∗) = min(FAR(∗)) (4.11)
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F2(∗) = min(MDR(∗)) (4.12)

F3(∗) = min(DTD(∗)) (4.13)

J(∗) = min(w1F1(∗) + w2F2(∗) + w3F3(∗)) (4.14)

4.6.1 Similarity threshold selection

The selection of the optimal redundancy threshold β that can reduce the training dataset

and keep or improve the efficiency of the monitoring algorithm is a challenging issue. For

each fault index we compute multi-objective function to obtain the optimal ED that gives

the optimal reduced size r. Then we take the summation of the three indices.

J.(β) =
FAR.(β)

FAR∗
.

+
MDR.(β)

MDR∗
.

+
DTDn.(β)

DTD∗
.

(4.15)

J(β) = JT 2(β) + JQ(β) + Jφ(β) (4.16)

Where FAR∗
. , MDR∗

. , DTD∗
. , represent the desired values for respectively FAR,

MDR, DTD of a given statistics. J.(β) is the loss function of a selected Euclidean distance

threshold for a given fault index. So, the multi-objective optimization problem (4.16),

which involves loss functions of the three fault detection indices, is performed to select the

optimal threshold β which defines the best trade-off between competing objectives.

4.6.2 Correlation Threshold Selection

similar to similarity threshold, we use the same multi-objective functions to determine the

best correlation threshold which gives the optimal reduced size in terms of monitoring

performance. 

J(T 2, γ) = FAR(T 2,γ)
FT ∗ + MDR(T 2,γ)

MT ∗ + DTDn(T 2,γ)
DT ∗

J(Q, γ) = FAR(Q,γ)
FQ∗ + MDR(Q,γ)

MQ∗ + DTDn(Q,γ)
DQ∗

J(φ, γ) = FAR(φ,γ)
Fφ∗ + MDR(φ,γ)

Mφ∗ + DTDn(φ,γ)
Dφ∗

(4.17)

J(T 2, Q, φ, γ) = J(T 2, γ) + J(Q, γ) + J(φ, γ) (4.18)

Where F{.}∗, M{.}∗, D{.}∗, represent the desired values for respectively FAR, MDR,

37



CHAPTER 4. REDUCED KPCA ALGORITHMS

DTD of a given statistics. J({.}, γ) is the loss function of a selected correlation threshold

for a given fault index. So, the selection of the threshold depends on which index should

be optimized.

4.6.3 Independence interval selection

The selection of an optimal independence interval that will be used to reduce the train-

ing dataset size in order to enhance the computational time and storage space, and keep

or even improve monitoring performance which is a hard task. It is a trade-off between

computational cost and monitoring performance.

J(T 2, ϵ) = FAR(T 2,ϵ)
FT ∗ + MDR(T 2,ϵ)

MT ∗ + DTDn(T 2,ϵ)
DT ∗

J(Q, ϵ) = FAR(Q,ϵ)
FQ∗ + MDR(Q,ϵ)

MQ∗ + DTDn(Q,ϵ)
DQ∗

J(φ, ϵ) = FAR(φ,ϵ)
Fφ∗ + MDR(φ,ϵ)

Mφ∗ + DTDn(φ,ϵ)
Dφ∗

(4.19)

J(T 2, Q, φ, ϵ) = J(T 2, ϵ) + J(Q, ϵ) + J(φ, ϵ) (4.20)

4.7 RKPCA computation time analysis

The evaluation of RKPCA efficiency requires to evaluate the computation time of the algo-

rithm in online phase. We take the original and different reduced training datasets ( r=768,

r=131, 232, 362, 432) to compute offline phase of RKPCA, then using these reduced train-

ing datasets we evaluate the computation time of each fault index of 2000 testing obser-

vations. Table 4.2-4.4 lists the computation time of indices T 2, Q, and φ of testing data

using original and reduced training data sizes( r=131,232,362,432,768) versus the testing

data size N.

Table 4.2 Computation time evaluation of testing data using index T 2

Testing data size N=1 N=100 N=1500 N=2000
r=131 0.03 1.3 48.8 77.2
r=232 0.05 2.1 56.1 92.2
r=362 0.08 27 68.2 106.4
r=432 0.09 3.6 75.1 114.7
r=768 0.11 4.01 84.8 135.8
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Fig. 4.6 Computation time of RKPCA using T 2 index versus testing data size using differ-
ent reduced training datasets

Table 4.3 Computation time evaluation of testing data using index Q

Testing data size N=1 N=100 N=1500 N=2000
r=131 0.04 1.6 49.3 79.6
r=232 0.06 2.5 57.3 94.7
r=362 0.08 3.1 70.1 109.9
r=432 0.10 3.9 76.6 115.6
r=768 0.12 4.03 85.4 132.7

Table 4.4 Computation time evaluation of testing data using index φ

Testing data size N=1 N=100 N=1500 N=2000
r=131 0.04 1.4 49.0 78.4
r=232 0.06 2.3 56.7 93.9
r=362 0.08 2.9 69.5 108.4
r=432 0.11 3.8 75.8 115.2
r=768 0.11 4.05 82.3 129.6

we already know that the computation time is function of polynomial of degree threes
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Fig. 4.7 Computation time of RKPCA using Q index versus testing data size using differ-
ent reduced training datasets

so using regression function we can obtain the computation time function as follows:

Fr(n) = αn3 + βn2 + γr + δ (4.21)

The functions are plotted in figures 4.6-4.8. Using one testing observation yields a

computation time inferior than 1 second. These values are less than the sampling time.

thus the results of monitoring are obtained before recording new observation. The multi-

objective function that is used to obtain the optimal monitoring performance reduces the

training dataset to 131 observations. Table 4.5 lists the execution time of different faulty

datasets.

Table 4.5 Computation time of different faulty datasets using RKPCA at r=131

RKPCA KPCA
Dataset Real fault Simulated faults Real fault Simulated faults
T 2 134.3 48.8 283.0 261.0
Q 140.2 49.3 802.1 273.3
φ 138.6 49.0 794.7 269.7
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Fig. 4.8 Computation time of RKPCA using φ index versus testing data size using differ-
ent reduced training datasets

RKPCA algorithm reduced the computation time in real process fault of N=2500 obser-

vations to 134.3, 140.2, and 1386 seconds compared to 783.0, 802.1, and 794.7 seconds of

KPCA in T 2, Q, and φ respectively. In simulated faults of 1500 observations, computation

times are 48.8, 49.3, and 49.0 seconds compared to 2610, 2, and 7947 seconds of KPCA in

T 2, Q, and φ respectively. We evaluate the gained computation time which is equal to one

minus the ration between computation time of RKPCA and KPCA:

G.ET (%) = (1− ET (r)

ET (r = 768)
)× 100 (4.22)

Where G.ET(%) is the gained computation time, ET(r) computation time of RKPCA, and

ET(r=768) is computation time. Tables 4.6-4.8 presents the obtained gained computation

time results. Reduced dataset of r=131 can gain up to 72.73% with one testing observations.

The gained time decreases until it settles around 40%. The less reduction of training data

size the less gained time.
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Table 4.6 Gained computation time % of testing data using index T 2

Testing data size N=1 N=100 N=1500 N=2000
r=131 72.73 67.58 43.40 43.15
r=232 54.55 47.63 33.84 32.11
r=362 27.27 32.67 19.58 20.48
r=432 18.18 10.22 11.44 15.54

Table 4.7 Gained computation time %of testing data using index Q

Testing data size N=1 N=100 N=1500 N=2000
r=131 66.67 60.30 42.27 40.02
r=232 50.0 37.970 32.90 28.64
r=362 33.33 28.04 17.92 17.18
r=432 8.33 3.23 10.30 12.89

Table 4.8 Gained computation time % of testing data using index φ

Testing data size N=1 N=100 N=1500 N=2000
r=131 66.67 65.43 40.46 39.51
r=232 50.00 43.21 31.11 27.55
r=362 33.33 28.40 15.55 16.36
r=432 8.33 6.17 7.90 10.80

4.8 RKPCA computation space analysis

The storage space depends only on the reduced dataset size r not on the testing data size. we

evaluate the storage space using different values of r. After that, using regression function

we can get the computation size as function of r. Table 4.9 shows values of the computation

space versus r.

Table 4.9 Computation space RKPCA algorithm

r 1 131 768 2000
Storage space(bytes) 5.47× 102 7.54× 104 5.49× 105 1.97× 106

S(r) = αr2 + βr + γ (4.23)

where α = 0.2185 and β = 547.0261

We plot computation space function in figure 4.9. The optimal monitoring at r=131 re-

quires 7.54×104 bytes of memory storage while the full training dataset (768 observations)

demands 5.49× 105 bytes. For any reduced training data size we can now easily obtain its

computation space. We evaluate the gained computation time which is equal to one minus
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Fig. 4.9 Computation space of RKPCA reduction size

the ration between computation time of RKPCA and KPCA. The gained computation time

is given as follows:

G.S(%) = (1− S(r)

S(r = 768)
)× 100 (4.24)

Where G.S(%) is the gained storage space, S(r) storage space of RKPCA, and S(r=768) is

storage space of KPCA. r=131 gained 86.27% of storage space, r=232 gives 74.86% gained

space, and r=362 comes with 58.83% gained storage space. Table 4.10 presents the values

of gained computation space.

Table 4.10 Gained computation space RKPCA algorithm

r 1 131 232 362
Gained storage space% 99.90 86.27 74.86 58.83

4.9 Conclusion

In this chapter, the proposed RKPCA methods have been introduced and well explained.

These methods have solved the issue of high time and space consumption in KPCA algo-

rithm. the three methods remove the irrelevant training observations that only provide the
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same monitoring information and adding extra weight to build monitoring algorithms. The

proposed methods will be validated in the next chapter where they will be used to monitor

industrial processes(Ain El Kebira cement plant rotary kiln process and TEP process), the

obtained results will be compared to PCA, KPCA, and recently published RKPCA tech-

niques.
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5
Applications, Results, and Discussion

5.1 Introduction

This chapter presents the applications of the proposed methods and the obtained results.

RKPCA methods have been applied to the Cement Rotary Kiln of Ain El Kebira. After-

ward, they have been applied to the Tennessee Eastman Process (TEP). The obtained results

are compared to the conventional PCA, KPCA and recently proposed RKPCA methods(k-

means RKPCA [137], reduced Rank-KPCA [129], and RKPCA based PCA [131]).

5.2 Cement rotary kiln process

5.2.1 Process description

The first step in the dry cement production process is to produce flour like raw material by

milling limestone, clay, and iron ore mix. This raw material is then fed to the kiln system

at the upper end of the preheat tower which is composed of a series of suspending cyclones

where heat exchange between feed material and hot gas stream exhausting the rotary kiln

is made. Drying, dehydration, and carbon expulsion are initiated wherein. Afterward, in

the rotary kiln which is a huge rotating furnace, several chemical reactions occur between

calcium and silicon dioxide yielding a new chemical structure called clinker. In the kiln

discharge, a cooling system is used to cool hot clinker to preserve its properties using forced

air. As a final step clinker and natural gypsum are milled together to get what is commonly

known as cement. Ain El Kebira cement plant (first production line) shown in Figure 5.1,

where our case study is conducted, is located in the east of Algeria. It has a rotary kiln of

5.4m shell diameter and 80m length, with 3◦ incline [10,138–140]. The kiln can be rotated

up to 2.14rpm as maximum speed using two 560KWs asynchronous motors and produces
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Fig. 5.1 Ain El Kebira Cement plant

Table 5.1 Description of different used cement plant process variables

variable Description Unit
x1, x3, x5, x7 cyclones I, II, III, and IV outlets gases pressure for tower I mbar
x2, x4, x6, x8 cyclones I, II, III, and IV outlets gases’ Temperature for tower I ◦C

x10 cyclones I, II, III, and IV inlet gas’s Depression for tower I mbar
x17, x19, x21, x23 cyclones I, II, III, and IV outlets gases pressure for tower II mbar
x18, x20, x22, x24 cyclones I, II, III, and IV outlets gases Temperature for tower II ◦C

x12, x25 the material from tower I and II that entering the kiln Temperature ◦C
x19, x15 Tower I and II exhauster fans driving motor power kW
x11, x16 Tower I and II exhauster fans Speed r.p.m

x13 the smoke filter outlet gas’s pressure for tower I and II mbar
x14, x26 the smoke filter outlet gas’s Temperature for tower I, and II ◦C

x27 The total consumed power two motors rotating the kiln kW
x28 the excess air from the cooler Temperature ◦C
x31 The secondary air temperature ◦C

x29, x32, x33 the air under the static grille, repression of fan I, II, and III pressure mbar
x30, x34 the cooling fan I, and fan III respectively Speeds r.p.m

x35,x37, x39 pressure of air under the chamber I, II, and III of the dynamic grille, repression of fan IV,
fan V, and fan VI respectively

mbar

x36 ,x38, x40 the cooling fan IV, fan V, and fan VI Speeds respectively r.p.m
x41 the dynamic grille Speed strokes/min

x42 Kiln’s head-hood pressure controller output controlling the cooler filter exhaust fans r.p.m
x43 Flow of fuel (natural gas) to the main burner Nm3/h
x44 fuel flow to the secondary burner Nm3/h

clinker with density from 1300 to 1450kg/m3 under the normal operation. The plant works

with two natural gas burners, the main one placed in the discharge end and the secondary

located in the first level of the pre-heater tower without any tertiary air conduct.

The data used to monitor the process is recorded from 44 sensors. The sensors measure

temperatures, pressures, speeds, and motors’ current. Table. 5.1 illustrates the different
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Table 5.2 Cement plant simulated sensors faults description

Fault Description Type
SFault1 Fault of 5% magnitude 0 mean and 0.05 std in tower II exhauster fan speed (Sensor 16) Abrupt
SFault2 Fault of −2% magnitude applied in fuel flow sensor(sensor 44) Abrupt
SFault3 Faults of +2% magnitude and slope of 4× 10−5 incooling fan VI speed sensor (sensors 30) Linear drift
SFault4 Faults of −2% magnitude and slope of −4× 10−5 in cooling fan III speed sensor (sensors 34) Linear drift
SFault5 Fault in temperature and flow sensors(sensors 12, 18, 43) with magnitudes of [+,−,+2%] Abrupt additive
SFault6 Fault in temperature sensors(4, 6, 8, 12, 24) with magnitudes of [+,+,+,−,−2%] Linear drift
SFault7 Fault of +4.5% to −5.5% magnitude in tower I exhauster fan speed (Sensor 11) Intermittent Abrupt

variables used in the process monitoring. In general, two main datasets are collected from

the plant which are used to develop and validate RKPCA model, and afterward to test under

different faulty situations the established monitoring scheme. The first dataset is divided

into training, testing, and faulty sub-datasets. The training dataset consists of 768 obser-

vations (one sample each 20s) which are collected under the healthy operating conditions

of the plant for 4 hours and 15 min. It is used to extract a reduced training dataset via

the Euclidean distance dissimilarity metric by which a RKPCA model is built. Whilst,

the testing dataset contains 11000 samples (one sample each second) which are used to

test and validate the developed RKPCA model. The last dataset includes 1500 samples

where various simulated sensors faults are carried out to evaluate the monitoring scheme

performance [10]. Ain Elkebira cement rotary kiln process has a training dataset of 768 ob-

servations most of them are similar, dependent, and correlated. These simulated faults are

briefly and adequately described and reported in Table 5.2. On the other hand, the second

main dataset represents an actual involuntary process fault and includes 2048 samples.

Table 5.3 RKPCA-ED performance using different selected similarity threshold β

β Xred size Computation time(s) JT 2 JQ Jφ J
0.0 768 342 6.23 3.41 7.57 17.21
4.30 237 125 3.59 2.41 2.30 8.30
4.50 165 79 2.94 2.36 2.10 7.40
4.67 131 52 1.98 2.66 1.95 6.59
4.80 105 31 2.94 4.37 2.01 9.32

5.2.2 RKPCA based Euclidean distance

5.2.2.1 Training dataset reduction

The original training dataset, before data size reduction, is used to build the conventional

PCA and KPCA models for a comparison study with the proposed RKPCA method in

the context of faults detection. Subsequently, all Euclidean distances between the origi-

nal dataset observations are calculated which leads to discarding redundant observations in
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building the RKPCA model. Thus, at each smaller Euclidean distance, RKPCA model is

obtained via a reduced training dataset where 85% of CPV is retained to determine its struc-

ture. Monitoring performance is evaluated based on the proposed cost functions outcomes

that are fixed to 2%, 2%, and 1 sample as desired FAR, MDR, and DTD, respectively.

Table 5.3 regroups various performance values of the RKPCA model established through

the more relevant observations retained from the original training dataset and its corre-

sponding computation time for different similarity thresholds β. It can be clearly seen that

the size of the training data is not reduced for β = 0 due to the noise, uncertainties, and

imprecision of the measurement devices. However, the increase of the similarity thresh-

old reduces significantly the training observations, consequently, the associate computa-

tion time notably decreases. Nevertheless, large value of β leads to eliminate most of the

relevant and non-redundant observations as a result monitoring performances deteriorate

accordingly.

To select the optimal similarity threshold β that can determine the redundant obser-

vations and gives the optimal monitoring performance, loss functions of the various fault

detection indices and their multi-objective metric for different obtained Euclidean distances

are depicted in Figure 5.2.(a). It is obvious that the different monitoring indices loss func-

tions have separately various critical similarity values for their corresponding minima. So,

from Figure 5.2.(a), the similarity threshold that minimizes the multi-objective problem is

β = 4.67. Consequently, the original training dataset is reduced to 131 observations where

83% of redundant samples have been removed. Besides, the computation time is reduced

to 52s.

5.2.2.2 Results and discussion

The obtained similarity threshold provides also the optimal monitoring performance. It is

clearly shown in Figure 5.2.(b) that more than 7% of FAR is reduced by the removal of the

redundant observation. Furthermore, 0.6% is gained in MDR, whilst one sample increase

is recorded in DTD. Figures 5.3 to 5.7 display the monitoring results in the real process

and different simulated sensors faults using the various detection indices established via

the developed RKPCA technique. These indices are shown before and after the occurrence

of faults.

This section shows the obtained monitoring results of Ain El Kebira rotary kiln pro-

cess using the proposed RKPCA in terms of FAR, MDR, DTD, and the training time re-

quired to build the proposed scheme. Also, these results are compared to conventional

PCA and KPCA to evaluate the efficiency of the linear and nonlinear characterization of
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the process and the effect of reducing training dataset on the fault detection and diagnosis

performance and solving the high computation and space costs. Besides, the proposed ap-

proach is compared to k-means RKPCA [137], reduced Rank-KPCA [129], and RKPCA

based PCA [131] methods which focus on the same purpose of reducing the time and space

complexity of the conventional KPCA.

Table 5.4 FAR (%) of faults monitoring results

Method Training Testing Real process fault SFault1 SFault2 SFault3 SFault4 SFault5 SFault6 SFault7
T2 2.64 2.40 7.80 0.50 1.00 2.50 0.20 0.50 1.40 0.34

PCA Q 1.43 1.30 14.70 1.40 1.50 1.10 0.30 1.20 2.10 3.10
φ 1.04 0.30 2.00 0.00 1.00 1.50 0.00 0.20 0.90 0.00

T2 2.60 2.43 8.01 0.50 1.00 2.50 0.00 0.50 1.40 0.32
KPCA Q 0.90 0.71 6.68 0.30 1.00 0.60 0.00 0.80 1.60 0.88

φ 1.04 0.30 2.00 0.00 1.00 0.60 0.20 0.20 0.90 0.00

T2 1.32 0.63 0.83 0.73 1.02 0.51 1.01 1.13 3.30 0.88
k-means RKPCA [137] Q 3.46 3.04 57.23 2.91 2.92 1.36 0.33 3.02 3.20 3.12

φ 2.90 5.54 21.23 6.80 4.60 0.75 0.52 4.60 6.16 9.93
T2 1.43 2.20 0.44 0.55 0.60 0.40 0.66 0.88 1.71 0.96

reduced Rank-KPCA [129] Q 2.73 1.05 48.99 0.30 1.20 0.90 0.20 0.70 2.00 4.80
φ 2.47 0.88 32.51 0.55 1.10 0.70 0.40 0.43 1.90 5.00
T2 3.13 3.09 4.98 0.30 0.90 1.20 0.10 0.20 1.10 0.16

RKPCA based PCA [131] Q 0.52 0.81 6.68 0.30 0.40 0.00 0.00 0.00 0.20 0.24
φ 7.03 6.49 6.50 2.60 2.40 5.50 0.40 1.80 3.40 7.35
T2 0.39 0.02 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RKPCA based ED [10] Q 1.69 3.20 5.12 3.50 3.60 1.90 0.50 3.80 2.00 3.79
φ 0.13 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

To evaluate and compare the monitoring performance of the well-established RKPCA

techniques, the same size of the dataset obtained by the proposed approach (131 samples)

is used as the number of selected clusters’ centers in the k-means RKPCA method. As

well, the reduced Rank-KPCA method has reduced the training dataset to 613 samples.

While RKPCA based on PCA technique is able to reduce the training dataset size to 36

observations Table 5.4 reveals the amount of FAR contributed by the three fault indices

using PCA, KPCA, different well-established RKPCA, and the proposed RKPCA methods.

It can be noticed that from the training and testing datasets, the developed RKPCA method

has performed better than the other techniques, particularly in T 2 and φ. Furthermore, it

has properly avoided false alarms in all faulty scenarios. On the other hand, FAR recorded

by Q is slightly high compared to both conventional PCA techniques, although it is still

tolerable. Consequently, the obtained small FAR strongly confirms the accuracy of the

proposed RKPCA model and its robustness to monitor the nonlinear process successfully.

Table 5.5 summarizes MDR and DTD results of the three mentioned techniques us-

ing T 2, Q, and φ for the real process fault and the different simulated sensors faults. By

process expert in the plant, the real process fault occurrence time was estimated to be at

sample 450, it can be clearly seen that the proposed RKPCA outperforms all the studied

techniques when applied to an actual process fault. Moreover, it shows results relatively

equivalent to the conventional RKPCA especially for the DTD and Q index. In general,

Q index promptly and correctly detects the almost faults compared to conventional PCA,
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Fig. 5.2 (a) Different loss functions vs Euclidean distances. (b) Average FAR, MDR, and
DTD vs Euclidean distances (RKPCA-ED technique)

KPCA, k-means, and reduced Rank-RKPCA techniques. However, it relatively fails to

quickly announce the sensor fault SFault6. While, T 2 and φ indices, obtained using the

conventional KPCA, detect with a satisfactory accuracy roughly all the faults than the de-

veloped RKPCA method. Even so, MDR is deteriorated for SFault3. As result, it clearly
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Fig. 5.3 RKPCA-ED monitoring results of a real process fault

appears that the monitoring of abrupt single or multiple faults is easy through the conven-

tional PCA and its nonlinear versions KPCA techniques. Whilst the drift faults, which are

considered the most difficult type of faults due to the small development in magnitude over

time, are reliably detected with slight delay by the developed RKPCA technique. In spite of

the fact that the k-means RKPCA and RKPCA based on PCA techniques take the shortest

compute times which are respectively 49 and 27 seconds, the proposed RKPCA technique

is still computationally effective which requires 52 seconds to build FDD scheme. It has

outperformed the well-established RKPCA methods in terms of FAR using T 2 and φ in-

dices. Furthermore, it has the lowest MDR and DTD using Q index in all faults.
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Fig. 5.4 RKPCA-ED monitoring results of the simulated sensor fault SFault1

5.2.3 RKPCA based correlation

5.2.3.1 Training dataset reduction

The training dataset is first zero mean and unit variance normalized. Then, the correlations

between samples are computed and sorted in decreasing order. The selection of a corre-

lation threshold that eliminates the correlated observations and builds a reduced dataset is

based on one of these sorted correlation coefficients. The first correlation coefficient is

selected as correlation threshold, the training dataset is reduced based on that threshold

and the monitoring performance is recorded ( FAR, MDR, and DTD contributed by the

fault indices). Each time the correlation threshold is selected as one of the correlation co-

efficients to reduce the training observations and record the performance. Loss functions

have been used to determine the optimal correlation threshold γ based on the monitoring
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Fig. 5.5 RKPCA-ED monitoring results of the simulated sensor fault SFault3

performance. The performance of the RKPCA is evaluated using loss functions of three

fault indices and their average loss function presented in section 4.6.2. At point γ = 0.865,

the average loss function, and index T 2 loss function have their optimal values, while Q

and φ get their optimal values at γ = 0.833 and γ = 0.83 respectively. Figure 5.8 displays

the loss function J and Figure 5.9 shows the loss functions of fault indices T 2, Q, φ plot.

It is clear that J and JT 2 have optimal values at γ = 0.865 while JQ and Jφ optimum at

γ = 0.833 and γ = 0.83 respectively.

Table 5.6 presents the results of the monitoring performance of RKPCA, computation

time and reduced training dataset size (number of retained observations) versus the correla-

tion threshold γ. It can be seen that γ = 1 will not reduce the training dataset because there

is no observations that are entirely linearly correlated. Decreasing the correlation threshold

certainly will start accordingly reducing the number of observations. Thus, the execution
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Fig. 5.6 RKPCA-ED monitoring results of the simulated sensor’s fault SFault6

time and storage space costs will remarkably decrease. The more decrements in γ more

reduction in the dataset size thus more reduction in the execution time, however, it will

deteriorate the monitoring performance due to the loss of important information. So the

selection of correlation threshold now depends on which index would be improved. In this

dissertation, the loss function J that represents the average performance of FAR, MDR,

and DTD has been utilized to determine the optimal value of γ. The optimal value is at

γ = 0.865 so any two or more observations that have a correlation between them greater

or equal to 0.865 are drooped from the original training data to build a reduced dataset of

r = 513 observations making a reduction rate of 33.2%.
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Fig. 5.7 RKPCA-ED monitoring results of the simulated sensor fault SFault7

5.2.3.2 Results and discussion

The reduced dataset of 513 samples is now used to build reduced kernel matrix Kred of r×r.

Kred is eigen-decomposed to generate the eigenvalues and eigenvectors. CPV (l) = 80 %

is used to determine the number of PCs. After retaining l principal components, the fault

indices thresholds are computed.

Testing dataset of 11000 observations is used to validate RKPCA scheme. The moni-

toring scheme should have a few amount of FAR contributed using three fault indices in

order to be validated (mainly less than 5%). After the model has been validated, it is used

to monitor the different faulty datasets the performance of RKPCA is evaluated in terms of

FAR, MDR, DTD. The results are presents in tables 5.7 5.8, 5.9.

Table 5.7 reveals the amount of FAR contributed by the three fault indices T 2, Q,
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Table 5.5 MDR (%) and DTD of faults monitoring results

Faults Real process Fault SFault1 SFault2 SFault3 SFault4 SFault5 SFault6 SFault7
T 2 1.98|5 2.40|1 0.00|1 4.70|20 15.60|1 0.00|1 22.50|100 0.00|1

PCA Q 1.68|4 1.20|1 0.00|1 12.90|7 2.20|3 0.00|1 15.60|56 0.00|1
φ 1.14|4 1.80|1 0.00|29 7.20|19 6.40|1 0.00|56 19.40|1 0.00|1
T 2 0.60|1 2.40|1 0.00|1 7.20|20 15.60|1 0.00|1 22.40|100 0.00|1

KPCA Q 0.60|1 1.20|1 0.00|1 15.90|35 2.80|12 0.00|1 16.80|56 0.00|1
φ 0.40|1 1.90|1 0.00|1 7.20|29 6.30|19 0.00|1 19.40|56 0.00|1
T 2 0.53|1 6.18|1 0.00|1 8.18|38 35.72|165 0.00|1 54.49|246 0.00|1

k-means RKPCA [137] Q 0.70|2 0.79|1 0.00|1 9.60|42 3.99|3 0.00|1 13.97|58 0.00|1
φ 0.80|2 1.73|1 0.00|1 8.20|36 7.29|33 0.00|1 16.56|56 0.00|1
T 2 1.88|2 5.18|1 0.00|1 7.18|30 30.53|141 0.00|1 35.13|124 0.00|1

Reduced Rank-KPCA [129] Q 0.68|2 1.39|1 0.26|2 8.38|78 3.79|5 0.00|1 17.16|56 0.00|1
φ 0.60|2 2.79|1 0.00|1 7.66|29 6.58|31 0.00|1 19.16|57 0.00|1
T 2 0.78|1 4.60|2 0.00|1 7.88|25 20.95|73 0.00|1 28.55|97 0.00|1

RKPCA based on PCA [131] Q 0.62|1 2.23|2 0.00|1 21.15|89 5.38|19 0.00|1 19.76|58 0.00|1
φ 0.53|1 3.05|2 0.00|1 7.79|28 7.59|3 0.00|1 12.77|58 0.00|1
T 2 0.79|1 3.39|1 0.00|1 6.80|29 14.40|3 0.00|1 32.70|49 0.00|1

RKPCA based ED [10] Q 0.48|1 1.19|1 0.00|1 5.90|7 1.79|3 0.00|1 11.80|125 0.00|1
φ 0.91|1 2.19|1 0.00|1 7.40|29 5.20|19 0.00|1 18.90|90 0.00|1

Table 5.6 RKPCA based correlation performance versus γ

γ Training data size RKPCA execution time(s) JT 2 JQ Jφ J
1 768 350 2.457 3.173 2.8368 8.467

0.9 654 303 2.389 3.052 2.743 8.184
0.865 513 240 2.237 2.429 2.576 7.242
0.833 463 196 3.172 2.143 2.0846 7.687
0.83 387 132 3.1876 2.22 2.051 8.059
0.8 358 114 3.853 2.504 2.483 8.872

0.78 320 103 3.225 4.493 5.4774 13.632

Table 5.7 FAR contributed by different fault indices

Faults PCA KPCA RKPCA based correlation
T 2 Q φ T 2 Q φ T 2 Q φ

Training data 2.64 2.33 1.52 2.60 1.25 1.52 2.10 1.20 0.86
Test data 2.55 1.76 1.03 2.60 1.04 0.80 1.70 0.96 0.75

Real process fault 7.8 14.7 2.00 8.01 6.68 2.00 32.70 10.46 0.40
Simulated Fault 1 0.50 1.40 0.00 0.69 0.37 0.00 0.20 0.80 0.00
Simulated Fault 2 1.00 1.50 1.00 1.00 1.00 1.00 1.10 2.40 0.60
Simulated Fault 3 2.50 1.10 1.50 2.50 0.60 0.60 3.40 0.60 0.00
Simulated Fault 4 0.20 0.30 0.00 0.00 0.00 0.20 0.20 0.10 0.00
Simulated Fault 5 0.50 1.20 0.20 0.50 0.80 0.20 0.20 0.50 0.00
Simulated Fault 6 1.40 2.10 0.90 1.40 1.60 0.90 1.90 0.90 0.60
Simulated Fault 7 0.34 3.10 0.00 0.32 0.88 0.00 5.80 0.88 0.16

The average 2.04 2.95 0.82 1.96 1.42 0.72 4.93 1.88 0.33

and φ using PCA, KPCA, and the proposed RKPCA-corr. Each row presents the result

of the dataset while the last row is an average FAR contributed by each fault index. In

the training and test dataset, RKPCA method has contributed less FAR using all the three

indices compared to PCA and KPCA. RKPCA method has quietly reduced FAR amount

contributed especially using combined index φ to 0.86% and 0.75% in training and test
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Fig. 5.8 Loss functions J versus γ

Table 5.8 MDR contributed by different fault indices

Faults PCA KPCA RKPCA based correlation
T 2 Q φ T 2 Q φ T 2 Q φ

Real process fault 1.98 1.68 1.14 0.60 0.60 0.40 0.00 0.55 0.30
Simulated Fault 1 2.4 1.2 1.80 2.40 1.20 1.90 1.99 1.59 2.19
Simulated Fault 2 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Simulated Fault 3 4.70 12.97 7.20 7.20 15.90 7.20 4.79 13.17 7.18
Simulated Fault 4 15.6 7.20 6.40 15.60 2.80 6.30 16.96 2.59 6.98
Simulated Fault 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Simulated Fault 6 22.5 15.60 19.40 22.35 16.76 19.60 17.36 16.65 20.55
Simulated Fault 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The average 5.90 4.83 4.50 6.01 4.66 4.25 5.13 4.31 4.65

datasets respectively. In the different faulty datasets, RKPCA-corr successfully eliminated

FAR in faults 1,3,4,5 while slight false alarms in real process fault and faults 2,6,7 using φ

index. meanwhile, the results of T 2 are a little high in real process fault and faults 2,3,4,6,

and 7. index Q results good FAR in faults 5,6, and 7. The average FAR results show that
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Table 5.9 DTD contributed by different fault indices

Faults PCA KPCA RKPCA based correlation
T 2 Q φ T 2 Q φ T 2 Q φ

Real process fault 1 1 1 1 1 1 1 1 1
Simulated Fault 1 1 1 1 1 1 1 1 1 1
Simulated Fault 2 1 1 1 1 1 1 1 1 1
Simulated Fault 3 20 27 29 20 35 29 20 7 29
Simulated Fault 4 1 3 19 1 12 19 2 3 34
Simulated Fault 5 1 1 1 1 1 1 1 1 1
Simulated Fault 6 100 56 56 100 56 56 100 56 96
Simulated Fault 7 1 1 1 1 1 1 1 1 1

The average 15.75 11.38 13.63 15.75 13.5 13.63 15.87 8.87 20.5

our RKPCA contributed the best average using φ while KPCA has the best average in T 2

and Q.

The proposed RKPCA-corr contributes an acceptable FAR rate compared to conven-

tional KPCA, this shows that the reduction of the dataset not only improved the time and
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Fig. 5.10 RKPCA based correlation monitoring results of real process fault

space computations, it even leads the monitoring algorithm to converge to better perfor-

mance. Table 5.8 reveals MDR results using PCA, KPCA, RKPCA to monitor the differ-

ent faulty datasets. The monitoring performance is evaluated in terms of T 2, Q, and φ fault

indices. The evaluation of MDR results can be classified into two cases:

5.2.3.3 Case 1: Abrupt faults

It is noticeable from Table 5.8 that the different FDD methods have successfully detected

all the faults with different missed detection rates. Abrupt and intermittent faults (2,5,7)

have been strongly detected with zero MDR using all three FDD techniques. Figures 5.11,

5.12, 5.15, and 5.17 display the monitoring results of the different abrupt faults contributed

by fault indices T 2, Q, φ.
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Fig. 5.11 RKPCA based correlation monitoring results of simulated fault1

5.2.3.4 case 2: Drift faults

In the real process fault, the occurrence time of the fault is expected to be at observation

450. So the evaluation of the fault starts at 450 s. From Table 5.8, it can be noticed that

RKPCA-corr has detected the real process fault with less MDR compared to PCA and

KPCA using all fault indices, while RKPCA has some difficulties in drift (incipient) sim-

ulated faults (fault 3 and 4). In fault 3, PCA made the best result meanwhile in fault 4

KPCA had less MDR, Although all the three have approximately devoted close results.

The monitoring of drift faults is the most difficult fault due to small development in the

fault magnitude over time, although our RKPCA was able to detect the faults with accept-

able MDR. Figures 5.10, 5.13, 5.14, and 5.16 represent the monitoring plots of drift faults

( real process fault and faults 3, 4, and 6 respectively) using different fault indices. The
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Fig. 5.12 RKPCA based correlation monitoring results of simulated fault2

last row of Table 5.8 displays the average MDR of each fault index in the PCA, KPCA,

RKPCA. clearly, our RKPCA has the best results using T 2 and Q while KPCA has less

MDR using φ. PCA has contributed the highest average FAR, and MDR compared to

the nonlinear methods (KPCA, and RKCPA-corr) this is due to the fact that PCA assumes

a linear relationship among the process variables. The linearity assumption will lead to

degradation in the monitoring performance. Table 5.9 summarizes the results of the detec-

tion time delay of different faults using PCA, KPCA, RKPCA. It is clear that real fault and

abrupt faults are easy to be detected just after one sample, every FDD scheme was able to

detect it using the three fault indices. while the drift faults have a slight delay in the detec-

tion. This delay is due to slow development in fault about ±4× 10−5 slopes. Although the

faults have been detected before they reach 10%. The average results show that RKPCA

contributed less DTD in Q index while PCA and KPCA have the same averages in T 2 and
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Fig. 5.13 RKPCA based correlation monitoring results of simulated fault3

φ.

5.2.4 RKPCA based cosine pairwise

To evaluate the efficiency of the proposed RKPCA based cosine pairwise in FDD and its

ability to monitor nonlinear industrial processes with less computational time and storage

space, it has been applied to monitor Ain Elkebira cement rotary kiln process. This RKPCA

technique consists of three stages: the first is the reduction of the training data size. The

data reduction is based on Independence of training observations. such that the independent

observations are only kept and the dependent ones are eliminated due to the fact that they

provide redundant information and have the same effect on the monitoring scheme. In

the second step, The reduced dataset is used to build RKPCA scheme. The last step is to
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Fig. 5.14 RKPCA based correlation monitoring results of simulated fault4

monitor test the scheme based on FAR, MDR, and DTD.

5.2.4.1 Training dataset reduction

The determination of relatively independent observations is based on the cosine pairwise

distance between samples, so that any observations with a cosine pairwise distance nearly

equals 1 are considered as independent. Due to the noise among training dataset and error

measurement it is recommended to select an interval around 1. To select an accurate in-

dependence interval, the cosine pairwise distance matrix has been computed. The cosine

pairwise is in the range from 0.0306 to 1.763. The loss function J(T 2, Q, φ, ϵ) summa-

rizes the average performance versus the independence interval ϵ. the values of ϵ start from

zero and each time is increased to include another cosine distance. At each interval, a
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Fig. 5.15 RKPCA based correlation monitoring results of simulated fault5

reduced dataset is generated to be used as a training dataset for the KPCA algorithm. Per-

formance is recorded to evaluate the value of J(T 2, Q, φ, ϵ). The value of ϵ that minimizes

J(T 2, Q, φ, ϵ) is selected as optimal independence interval. Figure 5.18 displays the change

of the loss function versus ϵ. From that figure the value ϵ = 4.205 × 10−4 is the selected

Independence interval. Table 5.10 shows the training observations number along with the

KPCA execution time and the overall monitoring performance with different Independence

intervals. It is clear that selecting ϵ = 1 will take whole training observations thus no reduc-

tion and high computational time T = 350s. decreasing the interval surely will reduce the

number of observations and the execution time while the monitoring slightly deteriorates

then improved until it reaches its optimal performance at ϵ = 4.205× 10−4 after that when

ϵ gets close to zero it reduces important observations. The remained samples will not be

able to monitor the process.
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Fig. 5.16 RKPCA based correlation monitoring results of simulated fault6

Table 5.10 RKPCA performance versus ϵ

ϵ Size of training data RKPCA execution time (s) J
1.00 768 350 8.1

1.00× 10−1 719 312 8.21
1.00× 10−2 682 277 8.27
1.00× 10−3 427 155 8.23
4.21× 10−4 232 80 7.97
2.30× 10−5 31 11 17.75

5.2.4.2 Results and discussion

Selecting ϵ = 4.205 × 10−4 would reduce the training dataset from 768 to 232 observa-

tions or 69.79% reduction. The reduced training dataset Xred ∈ R232×44 is used as training

dataset to KPCA to monitor the process. RKPCA based cosine is compared to the or-

dinary KPCA, RKPCA based correlation, RKPCA based PCA [131] which reduced the
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Fig. 5.17 RKPCA based correlation monitoring results of simulated fault7

original dataset to 31 observations, RKPCA based correlation RKPCA ED [10]. In both

RKPCA-ED and RKPCA-corr, The training dataset is reduced to 131, and 513 respectively

observation. A set of three simulated faults(abrupt, drift, and intermittent), and real process

fault are used to test the proposed RKPCA techniques. RKPCA techniques aim to reduce

the training dataset size while reserving the same statistical properties. So the statistical

properties of the reduced datasets via the aforementioned RKPCA are evaluated. So it is

required to investigate the means and standard deviations of the reduced training datasets

to see whether they reserved the same statistical properties of the original dataset or there

are changes. Figure 5.19 plots the means and the standard deviations of the 44 different

variables of Ain El Kebira rotary kiln process of original and reduced datasets. The figure

shows small changes in the means and standard deviations of the variables of the reduced

dataset compared to the original one. It is clear small changes between the original and
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Fig. 5.18 Loss function J(T 2, Q, φ, ϵ) plot of RKPCA-cos

reduced datasets won’t lead to changes in the statistical characteristics of the process ,thus,

the reduced dataset can monitor the process instead of the whole dataset. RKPCA based

PCA retains a normalized reduced training dataset ,thus, it cannot be compared to other

techniques in terms of means and standard deviations. So the means and standard devi-

ations are not enough to see the changes in the statistical properties. Kullback Leibler

divergences (KLD) of the reduced datasets are computed to compare the reduced training

datasets. Figure 5.20 presents the KLD values of the aforementioned RKPCA methods.

All the reduced dataset shows less than 1 KLD values in the different 44 variables this can

be considered that all the RKPCA methods keep the same statistical properties of the orig-

inal training dataset. It can be not seen that the RKPCA based PCA [131] have the largest

KLD values while the proposed RKPCA (RKPCA-ED, RKPCA-corr, and RKPCA-cos)

have KLD varies from 0.1 to 0.5.
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Fig. 5.19 Means and standard deviations of cement rotary kiln different datasets

The reduced data Xred ∈ R232×44 has been used to train KPCA model and yield the

principal and residual components in the feature space in order to compute the fault de-

tection indices and their corresponding thresholds. CPV (l) = 80% has been used to

determine the number of retained principal components. To validate the RKPCA model, a

test dataset of 11000 has been used to evaluate FAR contributed by the three fault indices.

FAR rate should be minimal (less 5% in order to accept the model). The monitoring of

these faulty datasets is evaluated in terms of FAR, MDR and DTD and J multi-objective

function which summarizes the monitoring performance ( FAR, MDR and DTD con-

tributed by T 2, Q, and φ in one index), and then compared to the results obtained by

applying the KPCA and the aforementioned RKPCA techniques. Table 5.11 reveals FAR,

MDR, DTD, contributed by the different fault indices T 2, Q, and φ via the ordinary KPCA,

RKPCA based correlation, RKPCA based PCA [131], RKPCA based ED [10], and RKPCA
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Fig. 5.20 KL divergence values of cement plant reduced datasets using different RKPCA
approaches

based cosine methods of the different faulty datasets. The last row indicates the average

values of multi-objective index J(.) that summarizes FAR, MDR, DTD of each fault index

of the different fault indices. J is used to determine the best results. Thus the smallest val-

ues of J are considered as best results and any FAR, MDR, and DTD contributed by T 2,

Q, φ are considered best J performances and writing in bold. Starting with the real process

fault, using T 2 index RKPCA-ED has 0.00% FAR while other RKPCA techniques have

FAR around a small amount of false alarms (except RKPCA-corr which has 33.70), all the

techniques have detected the fault with almost 0% MDR and 1s DTD. Q index RKPCA-

PCA provided best FAR, RKPCA-cos with best MDR and DTD. with φ RKPCA-corr has

0.40% FAR, RKPCA contributes 0.06% MDR and detecting the fault after 1s. Fig.5.21

plots T 2, Q, and φ of the real process fault using RKPCA based cosine. In the abrupt fault,
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Fig. 5.21 RKPCA based cosine monitoring results of real process fault

RKPCA detected the fault using three indices with 0% FAR, 0% MDR, and 1s DTD. The

other techniques have a small amount of FAR and MDR but the detection is after 1s. The

drift fault is detected with RKPCA-cos contributing 0.20% using T 2 and 11.40% MDR, Q

index detected the fault after 6s and with RKPCA PCA using Q index 0.20% FAR(similar

to the ordinary KPCA). The intermittent fault is detected with 0% MDR and 1s DTD using

all techniques with small amounts of FAR. The last row shows the multi-objective index

RKPCA based PCA contributed best results using T 2 index meanwhile RKPCA based co-

sine gives the best performance using Q and φ. The index J summarizes the FAR, MDR,

DTD in one indicator. It is clear in T 2 that all the proposed RKPCA have outdone the or-

dinary KPCA, Using Q and φ indices, RKPCA based cosine has contributed the best result.

To reduce the time complexity to O(N2) it is required to reduce the dataset to less than 84.

the proposed techniques are not able to reduce the training data to the required size thus the

time complexity is O(r3). The proposed techniques have provided great performance in

terms of fault detection minimizing FAR, MDR, DTD percentages using the three fault in-

dices ( overcome KPCA) in one hand. On the other hand, the proposed methods were able
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to solve the high computation issue of the ordinary KPCA proving the lowest computation

time and space.
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Table 5.11 The monitoring performance of the different fault indices and via different techniques in the cement plant process

Faults RKPCA based correlation RKPCA based PCA [131] RKPCA based ED [10]
T 2 Q φ T 2 Q φ T 2 Q φ

Real process fault 32.70|0.00|1 10.46|0.55|1 0.40|0.30|1 4.89|0.06|2 0.67|0.68|11 65.03|0.00|1 0.22|0.79|1 5.12|0.48|1 0.00|2.19|1
SimFault1 0.20|1.99|1 0.80|1.59|1 0.00|2.19|1 5.60|6.00|1 0.00|0.00|1 10.80|0.00|1 0.00|3.79|1 3.5|1.19|1 0.00|0.00|1
SimFault2 1.90|17.36|8 0.90|16.65|25 0.60|20.55|25 5.80|11.60|7 0.20|5.20|25 11.00|3.20|7 0.00|6.80|29 1.90|5.90|7 0.00|7.40|29
SimFault3 5.80|0.00|1 0.88|0.00|1 0.16|0.00|1 24.00|0.00|1 2.67|0.00|1 52.00|0.00|1 0.00|0.00|1 3.79|0.00|1 0.00|0.00|1

J 4.01 4.72 4.34 3.00 4.49 6.00 4.07 2.01 4.00

RKPCA based cosine KPCA
T 2 Q φ T 2 Q φ

4.67|0.06|1 7.20|0.36|1 6.30|0.06|1 8.01|0.60|1 6.68|0.60|1 2.00|0.40|1
0.00|0.00|1 0.40|0.00|1 0.00|0.00|1 1.80|7.60|1 0.80|0.00|1 0.60|0.00|1

0.20|11.40|41 0.60|4.20|6 0.20|5.60|16 1.80|12.20|47 0.20|4.40|18 0.60|5.80|28
2.00|0.00|1 1.67|0.00|1 1.67|0.00|1 7.33|0.00|1 4.67|0.00|1 4.67|0.00|1

4.46 1.35 2.16 7.22 2.93 3.86
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5.3 Tennessee Eastman process

5.3.1 Process description

The TE process was first proposed in [141] by Downs and Vogel (1993) describing an

industrial chemical process to develop and evaluate plant-wide control strategy and multi-

variate process monitoring techniques. This benchmark has been widely utilized by many

researchers to test and validate their fault detection and diagnosis algorithms. The sys-

tem consist of five principle unit operations: Reactor, Condenser, recycle Compressor,

a vapor-liquid Separator, product Stripper. Figure 5.22 illustrates the different units of

TEP. The process consists of 52 variables [142] with 12 manipulated variablesXMV (1)

to XMV (12) and 41 measured variable XMEAS(1) through XMEAS(41). Table 5.12

lists the 12 manipulated variables and Table 5.13 presents the 41 measured variables. The

process data has training dataset and and 21 programmed faults (shown in Table 5.14 ) with

960 samples, the faults have been introduces after 160 samples.

Table 5.12 TE process manipulated variables

XMV Description
1 Valve position feed component D (stream 2)
2 Valve position feed component E (stream 3)
3 Valve position feed component A (stream 1)
4 Valve position feed component Aand C stream 4
5 Valve position compressor re-cycle
6 Valve position purge (stream 9)
7 Valve position underflow separator stream10
8 Valve position underflow stripper (stream 11)
9 Valve position stripper steam
10 Valve position cooling water outlet of reactor
11 Valve position cooling water outlet of separator
12 Rotation of agitator of reactor

5.3.2 RKPCA based ED data reduction

The proposed RKPCA-ED approach has been applied to TEP benchmark. The training

data set under the healthy operating condition is reduced by eliminating the similarity ob-

servations affecting the monitoring performance. First, all the Euclidean distances between

the n observations are calculated and sorted in descending order to have n(n−1)
2

distances.

Similar observations normally have Euclidean distance equal to zero but due to the noise

and the uncertainties, we could take distances greater than zero. All observations that have
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Fig. 5.22 Diagram of Tennessee Eastman process

Euclidean distances less or equal similarity threshold can be considered as similar obser-

vations so they will be represented by only one observation. After neglecting the similar

observations, a reduced training data set is generated. After computing the distance ma-

trix and sort its elements in increasing order it is found that the distances are varying from

3.012 to 16.6011. To determine the best similarity threshold only distances varying from

3.012 to 8.7 are taken in concentration. The optimal similarity threshold for monitoring

TEP process is determined by optimizing the loss function. three loss functions J(T 2),

J(Q), J(φ) are computed, then J(β, T 2, Q, φ) is obtained. The optimal value of JT 2 and
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Table 5.13 TE process measured variables description

XMEAS Description
1 Feed flow component A (stream 1)
2 Feed flow component D (stream 2)
3 Feed flow component E (stream 3)
4 Feed flow components A and C (stream 4)
5 Recycle flow to reactor from separator (stream 8)
6 Reactor feed (stream 6)
7 Reactor pressure
8 Reactor level
9 Reactor temperature
10 Purge flow (stream 9)
11 Valve position cooling water outlet of separator
12 Separator level
13 Separator pressure
14 Separator underflow (liquid phase)
15 Stripper level
16 Stripper pressure
17 Stripper underflow (stream 11)
18 Stripper temperature
19 Stripper steam flow
20 Compressor work
21 Reactor cooling water outlet temperature
22 Condenser cooling water outlet temperature
23 to27 Concentration in Reactor feed (stream 6),
28 Components A through F
29 to35 Concentration in Purge (stream 9),
36 Components A through H
37 to Concentration in stripper underflow (stream 11),
41 Components D through H

JQ corresponds to β = 6.5 while for Jϕ is β = 6.9. Thus β = 6.5 corresponds to the overall

loss function optimal value. β = 6.5 has been chosen to produce the training data set with

size l = 270 instead of the original size n = 960, this reduced data set is used to build up

a RKPCA model to monitor TEP process and to compute the fault indices thresholds T 2
α ,

Qα, and φα.

5.3.3 RKPCA based correlation training dataset reduction

The selection of correlation threshold to eliminate the correlated observations and build

a reduced dataset is based on one of the sorted correlation coefficients. The first correla-

tion coefficient is selected as correlation threshold, the training dataset is reduced based

on that threshold and the monitoring performance is recorded ( FAR, MDR, and DTD
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Table 5.14 Tennessee Eastman Process fault description

No Fault description Type
IDV(1) A/C-ratio of stream 4, B composition constant Step
IDV(2) B composition of stream 4, A/C-ratio constant Step
IDV(3) D feed (stream 2) temperature Step
IDV(4) Cooling water inlet temperature of reactor Step
IDV(5) Cooling water inlet temperature of separator Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss (stream 4) Step
IDV(8) A/B/C composition of stream 4 Random
IDV(9) D feed (stream 2) temperature Random
IDV(10) C feed (stream 4) temperature Random
IDV(11) Cooling water inlet temperature of reactor Random
IDV(12) Cooling water inlet temperature of separator Random
IDV(13) Reaction kinetics Drift
IDV(14) Cooling water outlet valve of reactor Sticking
IDV(15) Cooling water outlet valve of separator Sticking
IDV(16) (unknown) deviations of heat transfer within stripper (heat exchanger) Random
IDV(17) (unknown) , deviations of heat transfer within reactor Random
IDV(18) (unknown), deviations of heat transfer within condenser Random
IDV(19) (unknown), recycle valve of compressor underflow separator (stream 10), Sticking

underflow stripper (stream 11) and steam valve stripper
IDV(20) (unknown) Random
IDV(21) The valve for Stream 4 was fixed at the steady state position Constant

contributed by the fault indices). Each time, the correlation threshold is selected as one of

the correlation coefficients to reduce the training observations and record the performance.

The performance of the RKPCA is evaluated using loss functions of three fault indices and

their average loss function presented in section 4.6.2. Figure 5.23 shows loss function plot

the optimal point is at γ = 0.549 which is able to reduce the dataset to 216 observations(

22.5%).

5.3.4 RKPCA based cosine training dataset reduction

The cosine pairwise distances between observations are computed in order to determine

the dependent samples that have pairwise cosine distance near to one. Loss function

J(T 2, Q, φ, ϵ) is evaluated to determine the accurate range size of ϵ. The performance is

recorded in terms of FAR, MDR, and DTD with desired FAR and MDR values equal to 5%

and 10 samples desired DTD. The optimal value of J(T 2, Q, φ, ϵ) is 9.47 at ϵ = 2.34×10−3.

The selected value of ϵ reduces the training dataset to 825 observations, which means more

that 14% reduction. Figure 5.24 plots loss function J(T 2, Q, φ, ϵ) versus ϵ and indicates

the optimal value of ϵ that minimizes loss function.
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Fig. 5.23 RKPCA based correlation TEP loss function
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Fig. 5.24 TEP dataset loss function J(T 2, Q, φ, ϵ) plot using RKPCA based cosine

5.3.5 Results and discussion

The proposed methods (RKPCA based ED, RKPCA based correlation, and RKPCA based

cosine) are applied to monitor TEP guarantee their ability to monitor more complex indus-

trial processes. The results of the monitoring are recorded in terms of FAR, MDR, DTD,

and multi-objective function J that summarizes FAR, MDR, DTD rates of each index (T 2,

Q, and φ). These results are compared to the conventional KPCA method, RKPCA based

PCA technique proposed by Harkat et al. [131].

Before evaluating the monitoring results, the reduced dataset via the aforementioned

RKPCA methods are compared to the original dataset in terms of means, standard devia-

tion, and Kullback Leibler divergence of each variable to ensure that the reduced datasets

preserve the same statistical characteristics of the original dataset. Figures 5.25 plot the
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(b) Different datasets standard deviations
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Fig. 5.25 Means and standard deviations of TEP different datasets

means and the standard deviations of 52 variables of original and reduced TEP datasets (

except RKPCA based PCA due to the fact that this technique retains normalized dataset).

The reduced number of observations leads to small changes in the statistical characteristics

of the process. It is noted there are small changes in the means and variances of the reduced

datasets but the small changes are not clear so KLD of reduced datasets is computed and

plotted in figure 5.26. KLD of the proposed techniques is computed using the original non-

normalized training dataset. In RKPCA based PCA KLD is calculated using a normalized

training dataset.
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Fig. 5.26 KL divergence values of TEP reduced datasets using different RKPCA ap-
proaches

It can be seen that RKPCA based cosine has the smallest KLD rates while RKPCA

based PCA have large KLD, the other RKPCA methods have an acceptable rate which

means that they all reduced RKPCA are almost kept the same statistical properties of

the original training dataset (slight change in RKPCA based PCA). The reduced train-

ing datasets are used to build a reduced kernel matrix in order to determine the principal

components at CPV (l) = 85%. The performance of 21 faults dataset is compared to

the conventional KPCA in terms of FAR and MDR contributed by T 2, Q, and φ then

J = FAR(.)
5

+ MDR(.)
5

+ DTD
10

is used to determine the best performance in each fault. The

best J results are highlighted in bold to present the best results. Table 5.15 presents the

FAR, MDR, and DTD results of 21 TEP faults contributed by T 2, Q, and φ of KPCA,

RKPCA based PCA, RKPCA based ED [10], RKPCA based correlation, and RKPCA

based cosine techniques. the last row is the averages of J(.) of each index. RKPCA

based correlation has best J(T 2) = 3.11 means that it has contributed best performance

using T 2 index. RKPCA based cosine contributed J(Q) = 2.83 and J(φ) = 2.63 so it

has the best results using Q, and φ indices. Coming to the overall performance J , RKPCA
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Fig. 5.27 TEP data reduction and gained computation time percentages

based correlation has outdone all the ordinary KPCA and the other RKPCA techniques

with J = 9.43. The ordinary KPCA has J = 9.87, RKPCA based PCA J = 15.74, and

RKPCA ED comes with J = 10.10. Clearly that RKPCA based PCA comes with the worst

performance, as compression between RKPCA based correlation and RKPCA based PCA,

both techniques remove the correlated observations in order to reduce the training dataset

size but RKPCA based PCA eliminates all the correlated observations (which may lead to

underfitting) while our techniques select a range of correlations to remove the correlated

observations without affecting the performance. The execution time RKPCA based PCA

takes 18 seconds, RKPCA based correlation takes 111 seconds, RKPCA ED needs 157

seconds, The RKPCA based cosine technique requires 388 seconds while KPCA demands

417 seconds. The proposed RKPCA are showing great monitoring performance in terms of

FAR, MDR, and DTD using all the three fault indices compared with the ordinary KPCA
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Fig. 5.28 Monitoring results of TEP fault IDV(1) using RKPCA based cosine

and a recently published work RKPCA based cosine [131]. On the other hand, are able to

enhance the time and space computations of KPCA algorithm.

Fig. 5.27 reveals the data size reduction and gained computation time percentages

using the three proposed RKPCA techniques. RKPCA-ED reduced 71.88% of training ob-

servation which gains 62.35% execution time. RKPCA-corr eliminates 78.02% of training

observation gaining 73.00% of computation time. Using RKPCA-cosine removes 14.06%

of observations and improving the computation time by 6.95%. Fig. 5.28 shows the mon-

itoring plots of fault IDV(1) using RKPCA based cosine. Fig.5.29 plots the monitoring

graphs of fault IDV(2) using RKPCA based correlation. Fig. 5.30 presents the monitoring

performance of IDV(6) using RKPCA based ED. these are some plots to illustrate the per-

formance of the proposed RKPCA methods in terms of T 2, Q, φ. As time complexity, TEP

original dataset has 960observation thus reduce time complexity to O(N2) it is required to
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Fig. 5.29 Monitoring results of TEP fault IDV(2) using RKPCA based correlation

reduce the dataset to less than 97. Clearly all the proposed techniques didn’t reduce the

training data to the required size thus the time complexity is O(r3).

5.4 Conclusion

The three proposed techniques have been tested on Ain Elkebira and TEP in terms of FAR,

MDR, DTD and computation time and memory space, and compared to different FDD

techniques. It is clear that the proposed methods have performed well in detecting differ-

ent faults with small FAR, MDR, DTD, in addition, they have minimizes the time and

memory consumption compared to KPCA algorithm. This makes the proposed methods an

efficient FDD schemes that can be reliable in monitoring industrial processes.
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Fig. 5.30 Monitoring results of TEP fault IDV(6) using RKPCA based ED
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Table 5.15 The monitoring performance of the different fault indices and FAR | MRD | DTD via different techniques TEP process

Faults
RKPCA based correlation RKPCA based PCA [131] RKPCA based ED [10]

T 2 Q φ T 2 Q φ T 2 Q φ
IDV(1) 2.50|0.38|2 25.63|0.13|1 22.50|0.00|1 0.00|0.75|5 0.00|0.63|7 0.00|0.38|4 0.00|0.75|7 3.75|0.25|3 1.88|0.25|3
IDV(2) 1.88|1.38|12 17.50|0.50|2 15.00|0.50|2 0.00|1.75|15 0.00|2.13|15 5.00|1.38|12 0.63|1.38|12 3.75|1.50|13 4.38|1.50|13
IDV(3) 11.30|84.38|3 27.5|62.25|1 38.75|49.75|1 0.00|99.88|34 0.00|99.88|32 1.25|92.38|21 0.00|98.75|41 3.75|92.13|3 1.25|93.75|21
IDV(4) 3.13|36.63|1 28.13|0.00|1 26.25|0.00|1 0.00|87.75|1 0.00|49.38|5 1.25|0.13|1 0.63|66.38|1 6.88|0.00|1 1.88|0.00|1
IDV(5) 3.13|63.63|1 28.13|44.75|1 26.25|37.88|1 0.00|78.25|2 0.00|92.38|3 1.25|64.13|1 0.63|75.50|1 6.88|64.75|1 1.88|65.50|1
IDV(6) 0.00|0.50|5 25.00|0.00|1 20.00|0.00|1 0.00|1.38|12 0.00|0.00|1 0.63|0.00|1 0.00|1.00|9 4.38|0.00|1 0.00|0.00|1
IDV(7) 0.63|0.00|1 26.25|0.00|1 23.75|0.00|1 0.00|0.00|1 0.00|0.50|1 0.00|0.00|1 0.00|0.00|1 0.63|0.00|1 0.63|0.00|1
IDV(8) 11.30|1.50|1 36.25|1.00|3 44.38|0.75|3 0.00|3.13|25 0.00|10.38|22 1.25|2.13|16 0.00|2.75|23 4.38|2.25|18 1.88|2.13|18
IDV(9) 20.60|86.25|1 39.38|64.00|1 49.38|51.88|1 0.00|99.63|1 0.00|99.88|121 7.50|93.75|1 1.25|97.75|1 5.00|94.13|1 5.63|94.75|1
IDV(10) 3.13|42.63|8 22.50|16.50|3 20.63|12.3|1 0.00|83.93|55 0.00|98.63|122 1.88|45.38|8 0.00|71.38|28 1.88|54.25|24 1.25|45.63|19
IDV(11) 5.63|36.25|6 25.00|12.25|1 29.38|8.75|1 0.00|63.13|7 0.00|69.50|13 2.50|23.63|6 0.00|54.63|7 2.50|31.00|7 1.88|25.8|6
IDV(12) 1.88|0.88|1 27.50|0.50|1 26.88|0.00|1 0.00|2.25|3 0.00|21.00|4 5.63|1.00|1 0.00|1.50|3 6.25|3.50|3 5.53|0.88|3
IDV(13) 2.50|4.63|8 20.00|3.75|1 14.38|3.63|1 0.00|6.00|47 0.00|5.25|43 3.13|4.50|37 1.25|5.50|38 4.38|4.88|37 2.50|4.63|37
IDV(14) 1.25|0.00|1 26.25|0.00|1 26.88|0.00|1 0.00|2.13|2 0.00|0.38|3 4.38|0.00|1 0.00|0.50|1 6.88|0.00|1 4.38|0.00|1
IDV(15) 33.80|82.13|78 25.00|68.00|1 21.25|55.75|1 0.00|99.88|680 0.00|99.88|677 1.88|92.38|92 0.00|98.75|234 0.00|91.50|133 1.88|92.88|92
IDV(16) 33.80|55.00|1 36.25|19.00|1 50.63|11.75|1 0.00|94.75|291 0.00|98.38|201 10.63|56.63|2 3.75|87.63|12 2.50|55.75|5 4.38|55.50|5
IDV(17) 3.13|12.88|1 31.88|2.88|1 32.50|2.88|1 0.00|27.88|29 0.00|15.38|24 3.13|5.63|20 0.63|22.38|29 7.50|4.75|20 2.50|5.13|20
IDV(18) 1.88|9.13|15 23.12|6.88|1 26.88|5.25|1 0.00|11.38|89 0.00|10.50|85 3.13|9.25|18 0.63|10.75|55 6.25|9.38|18 4.38|9.38|18
IDV(19) 1.25|81.37|11 23.13|28.38|2 18.13|22.75|1 0.00|99.13|78 0.00|99.75|501 4.38|71.13|11 0.00|91.25|11 6.25|78.75|2 2.50|76.00|11
IDV(20) 0.63|40.75|12 20.63|22.25|1 13.75|13.88|1 0.00|82.13|90 0.00|65.25|91 3.13|40.75|68 1.25|82.25|87 3.75|43.38|4 1.25|40.63|11
IDV(21) 8.13|50.50|104 40.63|61.63|1 48.13|30.25|1 0.00|72.25|286 0.00|65.38|370 6.88|49.13|14 0.00|61.38|285 11.88|47.75|2 9.38|48.00|2

J 3.11 3.09 3.23 6.01 6.90 2.83 4.40 2.95 2.75
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RKPCA Based cosine KPCA
T 2 Q φ T 2 Q φ

0.62|0.75|7 5.00|0.12|1 3.12|0.25|3 0.63|0.75|7 4.38|0.13|1 2.50|0.25|3
1.25|1.37|12 3.12|1.37|2 2.50|1.50|13 1.25|1.38|12 6.88|1.38|2 3.13|1.50|13
0.62|98.25|21 4.37|94.12|41 0.00|92.75|21 0.63|98.38|21 6.88|90.13|43 1.88|93.00|41
1.87|60.87|1 5.62 |0.00|1 1.87|0.00|1 1.25|63.38|1 5.00|0.00|1 1.25|0.00|1
1.87|75.00|1 5.62|63.87|1 1.87|64.75|1 1.25|75.13|1 5.00|61.88|1 1.88|64.88|1
0.00|1.00|1 2.50|0.00|1 0.00|0.00|1 0.00|1.13|10 5.63|0.00|1 1.88|0.00|1
0.00|0.00|1 0.62|0.00|1 0.00|0.00|1 0.00|0.00|1 2.50|0.00|1 0.00|0.00|1

0.63|2.75|15 7.50|2.37|16 3.75|2.12|20 0.00|2.75|23 6.25|2.25|18 1.88|2.13|18
1.87|98.00|1 3.75|94.37|1 6.25|94.50|1 3.13|97.38|1 8.75|92.75|1 6.88|94.75|1
0.00|68.12|8 1.87|48.25|8 1.87|41.37|15 0.00|70.63|28 3.75|49.50|11 1.88|44.25|19
0.62|49.50|6 7.50|32.75|6 4.37|24.00|6 0.63|52.50|6 6.25|27.25|7 3.75|23.75|6
0.62|1.50|1 7.50|2.00|3 5.00|1.00|1 0.63|1.63|3 8.75|3.13|3 5.63|0.88|3

0.62|5.37|36 5.00|4.37|17 2.50|4.50|37 1.25|5.38|37 4.38|5.00|41 3.13|4.63|37
0.62|1.25|1 6.25|0.12|1 3.12|0.00|1 0.00|0.50|1 6.88|0.00|1 3.13|0.00|1

0.00|98.00|227 5.00|91.87|88 1.87|92.25|88 0.63|98.50|114 3.13|88.63|66 1.88|92.63|101
4.37|85.12|12 3.75|50.37|5 7.50|47.87|2 4.38|87.75|149 5.00|51.50|5 4.38|53.63|5
0.00|23.12|18 5.62|4.50|18 3.75|5.13|18 0.63|22.00|29 10.63|4.00|20 10.63|4.63|20
0.62|70.75|18 3.75|9.37|18 3.75|9.25|18 0.63|10.63|55 10.00|8.88|16 5.00|9.25|18
0.00|90.75|2 6.25|78.37|2 4.37|74.62|2 0.00|89.25|11 8.13|76.63|2 3.13|73.88|11
0.00|72.62|4 3.75|43.37|7 1.87|41.50|7 0.00|71.38|87 4.38|42.25|7 3.13|40.50|12

0.00|58.25|174 7.5|47.75|1 5.63|46.62|1 0.00|60.00|174 16.25|43.75|1 6.88|47.00|2
4.01 2.83 2.63 4.17 2.90 2.80
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6
General conclusion

6.1 General conclusion

New RKPCA methods have been proposed in this dissertation as a solution to the con-

ventional KPCA high time and space computations. The new methods aim to reduce the

training dataset size based on some criteria in order to eliminate irrelevant training observa-

tions and keep only the relevant samples that can monitor the process with the same quality

and less memory and time consumption. The first proposed method reduces the redundant

observations among the training dataset based on the Euclidean distance between training

samples such that any two samples with zero Euclidean distance are considered similar

so that one of these samples can be eliminated afterwards a reduced training dataset. The

second method considered the correlated observations as repeated ones as consequence it

reserves the uncorrelated observations to build an uncorrelated reduced training dataset. In

the third method, The reduction is based on the statistical dependency between the observa-

tions. The dependent observations are removed from the dataset. All three methods build a

reduced training dataset on which KPCA algorithm is applied to monitor the process with

less time and memory consumption. The three techniques have been successfully able to

reduce the computational and space costs of ordinary KPCA.

The proposed methods have been utilized to monitor industrial processes: Ain Elkebira

cement rotary Kiln and TEP. The results are recorded in terms of FAR, MDR, and DTD

contributed by different fault indices: T 2, Q, and φ. A multi-objective index J has been

proposed to summarize all the results of different faults indices in one index. The memory

and space consumption computed. The proposed RKPCA methods results are compared to

other RKPCA techniques, KPCA, and PCA to evaluate the efficiency of these methods. The

obtained results show great monitoring results with a good reduction of FAR, MDR, and

DTD in addition to less computation time and space are required to perform the process
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monitoring compared to conventional Kernel PCA.

Although, the proposed RKPCA techniques have preform well in process monitoring

and reduce the time and space consumption of the ordinary KPCA. They still struggle to

obtain the best similarity, correlation, or Independence threshold that is used to build the

reduced training dataset. The convergence of the objective function is not always guaran-

teed.

6.2 Future work

The proposed techniques are able to solve the KPCA high computational time and space

complexity. The performance of the proposed RKPCA techniques could be developed to

monitor more complex industrial processes. As future works, it will involve developing

extensions of RKPCA methods to monitor dynamic processes. The extensions will include

reduced dynamic KPCA (RDKPCA), reduced interval-valued KPCA (RIKPCA), reduced

interval-valued KPCA (RIDKPCA), and many others.... The selection of thresholds (simi-

larity, correlation, and Independence) is very important in RKPCA so fast methods to select

these thresholds can be developed. Dynamic thresholds can be used to fault indices (T 2, Q,

and φ), the dynamic thresholds can minimize FAR and MDR.

The reduction techniques could be used to reduce other kernel features extraction meth-

ods like KPLS, kernel Fisher discriminant analysis (KFD), kernel canonical correlation

analysis (KCCA) and their different extensions.
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