
Registration Number:…..…../2019

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electronics

Option: Computer Engineering

Title:

Presented by:

- ABAD Malik

- BOUHAMIDI Ahmed Essadik

Supervisor:

 Dr. BELAIDI Hadjira

Static and dynamic collision avoidance

for multi-robots in crowded environment

Page I

Abstract:

A team of multiple mobile robots that work in parallel offers a number of advantages

over single robot systems. Multiple robots have the potential to finish a given task faster

than a single robot and they are able to perform some tasks that are outside the scope of

a single-robot system.

As a primary problem, motion-level conflict resolution requires that the robots avoid

collisions not only with static obstacles but also with other robots. If a robot regards its

neighboring robots as static obstacles, the conflict among the robots is inevitable in some

cases. It becomes worse in crowded multi-robot environments.

Therefore, the use of multiple robots in the same workspace requires the necessity

to coordinate between them. Coordination among the robots may be of two types,

centralized and decentralized. In the centralized approach, a single robot acts as the

coordinator which monitors the movement of robots and hence the goal accomplishment

is centered round the coordinator. In the decentralized strategy, there is no single

coordinator in the environment. Each robot coordinates its own movement and ensures

that it does not collide with any other robot while goal accomplishment.

In this project, a new hybrid multi-robots navigation strategy in crowded

environment (while avoiding static and dynamic obstacles) will be proposed. Thus, the

possibility of collision between the pre-planned trajectories will be calculated by a

centralized coordinator. Hence, the time to reach the possible collision points by each

robot is calculated according to their speed. Consequently, the robots concerned by the

collision have to take decision to avoid the collision by applying the technique of priority

between robots.

Page II

Dedication

To my lovely parents, grandparents, my ante and my wife who always supported me in

my studies.

To all my family and friends.

To all my friends who have been there for me, especially: Malik, Aimen and Younes.

To all people who helped and gave me the chance to be the person I am now.

BOUAHMIDI Ahmed Essadik

To all my family, especially my parents and my sister who supported me during my

studies.

To all my friends, particularly to Fouad, Ahmed, Lokman, Aimen and Walid who

helped me during hard times.

To all peoples who have been there for me and made me a better person.

ABAD Malik

Page III

Acknowledgement

We would like to express our gratitude to the many people who helped us during this

project, to all those who provided support, talked things over, read, wrote, offered

comments, allowed us to quote their remarks and assisted in the editing, proofreading

and design.

We would like to thank our supervisor, Dr. Hadjira BELAIDI, for the patient

guidance, encouragement and advices she has provided throughout our time as her

students. We have been extremely lucky to have a supervisor who cared so much about

our work, and who responded to our questions and queries so promptly. We would also

like to thank all IGEE club members. In particular we would like to thank signal and

systems lab’s responsible, Pr. BENTARZI H., who made this project realizable.

And without forgetting Dr. Med SAHNOUN for his precious advices.

Last and not least, we beg forgiveness of all those who have been with us over the

course of the years and whose names we have failed to mention.

Page IV

Table of contents
Abstract..I

Dedication.. II

Acknowledgement .. III

Table of contents .. IV

List of tables ... VII

List of figures .. VIII

General introduction ... 1

CHAPTER I Multi-robot generalities ... 3

1.1 Mobile Robots generalities ... 4

1.2 Path Planning Problem ... 5

1.2.1 Artificial Potential Field ... 6

1.2.2 Graph Search .. 6

1.2.2.2 The A*(A-Star) Algorithm ... 7

1.2.3 Sensor Based Method ... 8

1.2.3.1 Bug Algorithm’s family .. 9

1.2.3.1.2 Bug 2 Algorithm ... 9

1.2.3.1.3 Bug 0 Algorithm ... 10

1.2.3.2 D* Algorithm .. 10

1.3 Robot Formation ... 11

1.3.1 Communication .. 11

1.3.2 Control Distribution.. 11

1.3.3 Coordination and Cooperation ... 13

1.3.4 Size ... 13

1.3.5 Composition ... 14

1.4 Conclusion .. 14

CHAPTER II Robots hardware design ... 15

2.1 Differential drive kinematics .. 16

Page V

2.1.1. Forward kinematics for differential drive robots 18

2.1.2. Inverse kinematics of a mobile robot.. 18

2.1.3. Mapping angular wheel velocity to linear velocity............................... 19

2.1.4. Dimensions of robots we are using ... 21

2.2 Sensors .. 21

2.2.1 Ultra-Sonic sensor .. 21

2.2.2 Tachometer and encoder... 23

2.2.2.1 FC-03 Tachometer .. 24

2.3 Actuators... 25

2.3.1 L293D ... 26

2.3.2 DC motors ... 28

2.4 Wireless communication .. 29

2.4.1 Wi-Fi... 29

2.4.2 ESP 32 integrated Wi-Fi module .. 29

2.5 The ESP32-WROOVER controller .. 29

2.6 Building the robots circuit .. 32

2.7 Conclusion .. 32

CHAPTER III Robots software design ... 33

3.1 Environment construction using MATLAB ... 34

3.2 Static/dynamic obstacles and Collision avoidance 35

3.2.1 Computer level Obstacle DetectionThe space configuration production . 35

3.2.2 Path planning algorithm ... 36

3.2.2.2 Case of Multi-robots ... 37

3.3 Communication Part ... 38

3.4 Control part of robot ... 40

3.5 Conclusion .. 45

CHAPTER IV Results and discussions .. 46

4.1. Software Implementation ... 47

Page VI

4.1.1. Multi-robot formation strategy ... 47

4.1.1.1 Collision point treatment .. 48

4.1.1.2 Execution time .. 53

4.2. Implementation results.. 54

4.3. Problems and alternatives ... 57

4.4. Conclusion .. 57

General Conclusion .. 58

Future expansion .. 59

References .. 60

Page VII

List of tables

Table 2.1: The spinning direction and the speed control of each robot wheel……..............16

Table 2.2: FC-03 Pin Description…………………………………………………………......25

Table 2.3: L293D Pin Description…………………………………………………………….27

Table 2.4: specification of the DC motor that we are using……………………………….…28

Table 2.5: ESP32-WROOM-32 Specifications………………………………………………30

Table 4.1: Samples of the time needed to calculate the paths………………………………..53

Table 4.2: comparison of implementation results with simulation results for Robot 1….....56

Table 4.3: comparison of implementation results with simulation results for Robot 2….....56

Page VIII

List of figures

Figure 1.1: Different types of Robots…………………………………………………….….…4

Figure 1.2: Attractive and repulsive potential fields……………………………………….…6

Figure 1.3: Dijkstra’s Algorithm example…………………………………………………….7

Figure 1.4: BFS Algorithm example…………………………………………………………...7

Figure 1.5: A* Algorithm example……………………………………………………………..8

Figure 1.6: Bug 1 Algorithm example………………………………………………………….9

Figure 1.7: Bug 2 Algorithm example………………………………………………………….9

Figure 1.8: Bug 0 Algorithm example………………………………………………………...10

Figure 1.9: Centralized group Architecture………………………………………………….12

Figure 1.10: Decentralized group Architecture……………………………………………...12

Figure 2.1: Differential Drive kinematics………………………………………………….…16

Figure 2.2: a) mapping angular velocity into linear velocity………………………………...20

 b) Upper view of differential drive robot……………………………………....20

Figure 2.3: measurement of the robot’s body…………………………………………….….21

Figure 2.4: Features of Ultrasonic sensor HC-SR04………………………………………...22

Figure 2.5: Connecting ultrasonic sensor to the ESP32 card……………………………..…22

Figure 2.6: Generate the ultrasonic signal……………………………………………….….23

Figure 2.7: FC-03 PIN OUTS………………………………………………………………....25

Figure 2.8: L293D PIN OUTS………………………………………………………………...26

Figure 2.9: DC Motor……………………………………………………………………….…28

Figure 2.10: Interfacing L293D and 2 DC motors with ESP32………………………….….28

Figure 2.11: ESP32-WROOM-32 Pin Layout (Top View)……………………………….….31

Figure 2.12: Final circuit………………………..…………………………………………….32

Figure 3.1: Multi robot formation in 2D Map plot………………………………………......34

Figure 3.2: Matrix representation of 10x10 Map………………………………………….....36

Figure 3.3: Flowchart of A* Algorithm……………………………………………………....37

Figure 3.4: Generated path for Multi-robot formation……………………………………...38

Figure 3.5: Multi-Robot Network model ………………………………………………….…38

Figure 3.6: ESP-32 in listening mode ………………………………………………………..39

Page IX

Figure 3.7: MATLAB command window after sending DATA……………………………..39

Figure 3.8: Returning to listening mode after reception/execution………………………....40

Figure 3.9: Flowchart of the entire program………………………………………………....42

Figure 3.10: Flowchart of Path processing…………………………………………………...43

Figure 3.11: Calculation of future orientation..……………………………………………...43

Figure 3.12: Flowchart of Movement/direction processing………………………………....44

Figure 4.1: Path planning using four directions/Path Planning using eight directions…...48

Figure 4.2: Diagonal obstacles with thickness of one cell…………………………………...48

Figure 4.3: Diagonal obstacles with thickness of two cells………………………………......49

Figure 4.4: Horizontal/Vertical Multi-robot collision…………………………………….....49

Figure 4.5: Pseudo-code of the Horizontal/vertical collision avoidance Algorithm…….....50

Figure 4.6: Optimal paths depending on Horizontal/Vertical collision cell………………..50

Figure 4.7: Diagonal Multi-robot collision…………………………………………………...51

Figure 4.8: Pseudo-code of the diagonal collision avoidance Algorithm……………….…..52

Figure 4.9: Optimal paths depending on Diagonal collision……………………………..….52

Figure 4.10: Pseudo code of tunnel collision avoidance Algorithm………………………....53

Figure 4.11: 2D environment with two robots and some random obstacles…………….…54

Figure 4.12: Optimal Paths including dynamic/static avoidance…………………………...55

Figure 4.13: Pictures a, b, c, d and e show the behavior of the robots during the

implementation ………………………………………………………………………………..55

Page 1

GENERAL INTRODUCTION

 Autonomous mobile robots has become significant nowadays. Mobile robots are

a locomotive system, capable of moving from starting points to another. It may use

different kinds of displacement systems such as wheels, tracks, legs or combination of

them. This system should be equipped with sensors and actuators to execute different

complex tasks, tasks that could be too precise, repetitive or dangerous where human

beings can’t be effective.

 One of the most characteristics of mobile robots is moving safely, in other words,

navigating along its trajectory without collision or crash with all kinds of obstacles. An

intelligent control strategy is required, this strategy is called algorithms, what gives to

the robots the ability of moving from one point to another by calculating optimal1 safe

path. This is why we focus on path planning to make an autonomous mobile robots

system.

 In another hand, another problem occurs. That problem is the dynamic or

unknown obstacles that can’t be avoided using a pre-planned algorithm. However, by

developing the previous algorithm to take into consideration other robots in the same

system, the risk of crash between robots will be reduced. This method gives us the

possibility to pre-plan an optimal path without an inter-system2 collision.

 For outer-system dynamic/static obstacles, the problem can’t be fixed with same

algorithm, that why a hybrid-system3 is used to ensure a safe navigation.

Swarm robot which is used in many warehouse automation is a perfect example to

illustrate that. One major problem is faced during normal process which is optimal path

finder, robots generally lack to deliver a good service in term of perfect placement or

boxes pick and place through all the mazes of shelves and rooms for instance and its time

execution.

One other problem which is strongly faced is intelligent parking where the system is

exposed to abrupt and intense parking conditions, many cars may flow instantly and have

1 The lowest cost path
2 Robots running the same system
3 A system that use pre-planned algorithm plus real time detection algorithm

Page 2

to be guided to particular parking spots. In busy places like shopping or industrial

districts, such a solution will help prevent traffic jams caused due to parking lot entrance,

specially seen in densely populated cities. Also, there is a need to have a robust collision

avoidance algorithm in place for safety of humans and robots.

The work done before used different approaches, such as, potential field merged with

bug0 algorithm applied on one robot system [1], and also, multi-robot collision

avoidance using RFID tags [2] Those works have solved some major problems of the

path planning in single/multi-robots system, but it can be improved using a different

algorithm which is more cost-effective4.

To develop a cost-effective hybrid system, we propose a method that takes into

account goal assignment for the robots and collision points between them in order to

assign a better instruction that allows robots to take decision to avoid collisions. This is

often proven to be beneficial as preassigned goals result in circuitous path and

interchanging them with robots at a closer location is advantageous. Additionally, some

tasks require a robot to operate in territories with unknown obstacles. These can result in

completely new paths which are longer than previously accounted for. Therefore, priority

assignment can be introduced to tasks with multiple robots, allowing robots to decrease

speed or stop in order to respect priority path among themselves and minimize the time

requires to find new path. Thus we attempt to solve a dynamic collision based on time to

reach collision points.

This project is composed of four chapters. The first chapter introduces generalities

about multi-robots navigation systems, path planning and the different obstacle

avoidance algorithms. The second chapter introduces the hardware used for building the

robots. The third chapter explains how the simulation part was performed by giving

flowcharts and some examples. Finally, the last chapter presents the implementation part

and discusses the results, in addition some features will be proposed for the aim of

making a better system.

4 Calculate the shortest path in a minimum time

CHAPTER I
Multi-robot generalities

Chap I: Multi-robots generalities

Page 4

Multi-robot are nowadays more sought in order to accomplish repetitive and

difficult tasks (such as in warehouses, which will increase efficiency), since the more

delicate task is, the more accuracy and efforts it needs.

That’s why the choice of algorithm and resolution of path planning problems is

crucial in order to achieve our needs.

1.1 Mobile Robots generalities

1.1.1 Definition

A mobile robot is an automatic system that is capable of locomotion; mobile robots

have the capability to move around in their environment and are not fixed to one

physical location. It may have wheels, tracks, legs or a combination of them [3].

This complex mechanical device may be equipped with sensors and actuators

designed to perform complex tasks either autonomously or under supervision, such as

tasks that are too precise for human beings, repetitive or dangerous [4].

Figure 1.1: Different types of Robots

The most important characteristic of a mobile robot is, of course, to move, and be

capable to guarantee its safety, to do that, it is necessary for the robot to move and

navigate without colliding or clashing with any kind of obstacle. This safe navigation

requires an intelligent control strategy, called Algorithms, capable of overcoming the

Chap I: Multi-robots generalities

Page 5

uncertainties presented by the real world. So, the robot must be able to move from one

point to another by finding an efficient and safe path to avoid collision with the

obstacles, that’s why it is important to focus on path planning to guarantee the

autonomy of mobile robots.

The purpose of path planning aims to generate a free path without collisions

between a robot’s starting and final configuration.

1.2 Path Planning Problem

The main task for motion planning is to compute a possible path for a robot from

one configuration to another while avoiding obstacles [5].

For a mobile robot, in addition to avoid obstacles, the planner may be required to

optimize certain objectives such as computing a path of the shortest length, shortest

time or lowest energy consumption from one point to another while satisfying

constraints determined by the vehicle dynamics or the environment.

Therefore, it is an essential task in the field of mobile robotics, which can be

classified into two types: global path planning and local path planning.

For the Global Path Planning, the prior knowledge of the environment should be

known. Many methods have been developed for global path planning, i.e., Voronoi

graph, artificial potential field method, Dijkstra’s algorithm, visibility search, grids, cell

decomposition method, and so on.

In the other hand, for Local Path Planning, the robot can decide or control its

motion and orientation autonomously using equipped sensors such as ultrasonic

sensors, infrared range sensors, vision (camera) sensors, LiDAR … etc.

Since we are working in unknown obstacles (additional dynamic & static obstacles

can be found) fuzzy logic, neural network, neuro-fuzzy, PSO algorithm, ant colony

optimization algorithm, and simulated annealing algorithm, etc., are successfully

employed by various researchers to solve the local navigation problem, some of them

are used in sensor based systems in order to complete missing information using

sensors mentioned before.

Chap I: Multi-robots generalities

Page 6

Here we are going to see the most used methods in path planning systems:

1.2.1 Artificial Potential Field

This approach considers that the robots rolls in a field of virtual forces. The latter is

composed of two fields: the repulsive potential field around the obstacles and the field

of attractive potential produced by the respective goals point for each robot.

Figure 1.2: Attractive and repulsive potential fields.

The following figure shows the attractive force which is used to pull each robot

toward its respective goal. Its expression is calculated depending on the actual position

of each robot and the position of the targets while the repulsive force is used in order to

ensure the safety of robots (each robot/goal is repulsive for other robots to ensure that

each robot will be attracted only by its own goal). Its expression is written depending

on the actual position of robots at each position of the workspace and the obstacles

found in their neighborhood [6].

1.2.2 Graph Search

1.2.2.1 Dijkstra’s Algorithm and Best-First-Search

Dijkstra’s Algorithm works by visiting nodes in the graph starting with the object’s

starting point. It then repeatedly examines the closest not-yet-examined node, adding its

nodes to the set of the ones to be examined. It expands outwards from the starting point

until it reaches the goal [7]. From Figure 1.3, we can see that Dijkstra’s Algorithm is

guaranteed to find a shortest path from the starting point to the goal, as long as none of

the edges have a negative cost.

Chap I: Multi-robots generalities

Page 7

The Greedy Best-First-Search algorithm works in a similar way as Dijkstra’s

Algorithm, except that it has some estimate (called a heuristic) of how far from the goal

any node is. From Figure 1.4 we can see that instead of selecting the closest node to the

starting point, it selects the closest one to the goal. Compared to Dijkstra’s Algorithm,

Greedy Best-First-Search doesn’t guarantee the shortest path. However, it runs much

quicker than Dijkstra’s Algorithm because it uses the heuristic function to guide its way

towards the goal very quickly.

In the other hand, we can remark that Dijkstra’s Algorithm guarantee the shortest

path despite of working hard and wasting time exploring useless cells.

On the other hand, BFS Algorithm does less work but its final path isn’t optimal in

case of some kind of obstacles composition since it only considers the cost to get to the

goal and ignores the cost of the path.

1.2.2.2 The A*(A-Star) Algorithm

Developed in 1968 to combine heuristic and formal approaches, the A* is like

Dijkstra’s Algorithm where it can be used to find a shortest path, and like Greedy Best-

First-Search such that it can use a heuristic to guide itself. Therefore, it is as fast as

Greedy Best-First-Search and finds a path as good as what Dijkstra’s Algorithm does,

which means, taking the shortest path by exploring the less possible cells, Figure 1.5

shows an example of a concave obstacles combination:

Figure 1.3[7]: Dijkstra’s Algorithm Figure 1.4[7]: BFS Algorithm

Chap I: Multi-robots generalities

Page 8

Figure 1.5[7]: A* Algorithm

A* uses the distance between the current location and the target and moves to the

square that has the smallest distance. It evaluates squares (henceforth called a “node”)

by combining g(n), the exact cost of the path from the starting point to any vertex n and

h(n), the heuristic estimated cost from vertex n to the goal.

The total cost f (n) = g (n) + h (n) is calculated for each successor vertex and the

vertex with the smallest cost f (n) is selected as a successor.

1.2.3 Sensor Based Method

Robot motion path planning revolves around two models that are based on

different assumptions about the information available for planning. In the first model

called "path planning with complete information", perfect information about the robot

and the obstacles is assumed. Under the second model called "path planning with

incomplete information", an element of uncertainty is present, and the missing data are

provided by some source of local information such as a laser range finder or vision

sensor. This model introduces a notion of sensor feedback and transforms the operation

of motion planning into a continuous dynamic process. Under this approach, sensing

becomes an active process, the robot decides at each step of its path what sensory

information is required for generating its next step. The range sensor provides the robot

with coordinates of those points of obstacle boundaries that lie within a limited radius

of vision around the robot.

Chap I: Multi-robots generalities

Page 9

1.2.3.1 Bug Algorithm’s family

1.2.3.1.1 Bug 1 Algorithm

This algorithm make the robots move in the direction of the goal until an obstacle

is encountered. A canonical direction is followed (clockwise) until the location of the

initial encounter is reached. The robot then follows the boundary to reach the point

along the boundary that is closest to the goal. At this location, the robot moves directly

toward the goal. If another obstacle is encountered, the same procedure is applied.

Figure 1.6[8]: Bug 1 Algorithm example

1.2.3.1.2 Bug 2 Algorithm

In this algorithm, the robot always attempts to move along the line of sight toward

the goal. If an obstacle is encountered, a canonical direction is followed until the line of

sight is encountered.

Figure 1.7[8]: Bug 2 Algorithm example

Chap I: Multi-robots generalities

Page 10

1.2.3.1.3 Bug 0 Algorithm

The main contribution of this algorithm is a new leaving condition which allows

the robot to abandon obstacle boundaries as soon as global convergence is guaranteed,

based on range data in the direction of the target. It is observed that moving along a

straight path is faster than moving along the boundary of the obstacle, the leaving

condition is designed to abandon the boundary as soon as convergence is guaranteed.

The generated path is closer to the optimal path since the leaving condition is not based

on the line connecting the start and goal point. Increasing the range sensor allows the

robot to leave the obstacle boundaries earlier.[8]

Figure 1.8[8]: Bug 0 Algorithm example

1.2.3.2 D* Algorithm

D*, Incremental A*, and D* Lite are extensions of A* that incrementally repair

solution paths when changes occur in the underlying graph. These incremental

algorithms have been used extensively in robotics for mobile robot navigation in

unknown or dynamic environments.

D* functionality is equivalent to the A* re-planner, it initially plans using the

Dijkstra’s algorithm and allows intelligently caching intermediate data for speedy re-

planning [9], its benefits are:

 Optimal

 Complete

 More efficient than A* re-planner in expansive and complex environments.

 Local changes in the world do not impact on the path much.

 Most costs to goal remain the same.

Chap I: Multi-robots generalities

Page 11

 It avoids high computational costs of backtracking.

1.3 Robot Formation

Planning for multiple robots is a broad field with application-specific methods,

that’s why Taxonomies are needed to:

 allow comparing different methods

 identify key issues

 identify trade-offs

In this project, the most useful taxonomies (proposed by Dudek et al. 1993) are:

1.3.1 Communication

The objective of communication is enabling robots to exchange state and

environmental information with a minimum bandwidth requirement.

Of course, a higher communication exchange means a higher group performance,

but it usually involves intermittent requests, status information and updates of sensory

or model information, that’s why we need to determine What, When, How and to

whom communicate.

We should keep in mind that:

 Communication is not free, and can be unreliable

 In hostile environments, electronic countermeasures may be in effect.

The Major roles of communication are:

 Synchronization of action: ensuring coordination in task ordering

 Information exchange: sharing different information gained from different

perspectives

 Negotiations: who does what?

1.3.2 Control Distribution

There are 3 types of control Distribution:

 Centralized: All control processing occurs in a single agent.

Chap I: Multi-robots generalities

Page 12

Figure 1.9: Centralized group Architecture

The advantage of a Centralized Multi-Robot Planning Approach is that Off-the-

shelf path-planning algorithms can be directly applied, but, if the Dimensionality of

configuration space increases, it leads to an increasing running time.

 Decentralized: Control processing is distributed among agents.

Figure 1.10: Decentralized group Architecture

Proposed by O’Donnell and Lozano-Perez 1989[10], this method plans paths for

each robot independently of other robots, and coordinate them so that collision among

robots are avoided.

Chap I: Multi-robots generalities

Page 13

The Advantage is that Dimensionality of configuration space doesn’t increase

running time since each robot is independent from others, but in the other hand,

coordination is not always possible, which doesn’t complete the decoupled planning.

Here are types of Decoupled approaches:

 Path coordination:

 Plan independent paths for each robot

 Plan velocities to avoid collisions (velocity tuning)

 Prioritized planning

 Consider robots one at a time, in priority order

 Plan for robot i by considering previous i-1 robots as moving obstacles

 Hierarchical: Use groups of centralized systems.

1.3.3 Coordination and Cooperation

Coordination is when many robots share common resources (e.g. workspace,

materials), they must coordinate their actions to resolve conflicts (e.g. collision).

Cooperation is when many systems strive to incorporate cooperation where

robots are working together towards common goals (Cooperation requires

coordination).

1.3.4 Size

Define size of the multi-robot system, for example, if it is a single robot, pair of

robots, a limited number of robots or an infinite number of robots.

Scalability: this describes how amenable the system is to adding more robots.

It can result in a continuous degradation in performance as opposed to discrete.

Performance: the performance of a system can be characterized based on the

number of robots (e.g. the number of tasks that can be accomplished in 1 hour).

Interference: Given limited resources, there is often a plateau or even decrease in

performance once a certain threshold of robots is reached.

Chap I: Multi-robots generalities

Page 14

1.3.5 Composition:

The composition defines if the System is Homogenous or Heterogeneous, for

example:

Homogeneous: All robots in the system have similar functionality and hardware.

Heterogeneous: Robots have varying functionality and hardware, affects

maneuverability, tasks achievable, control possibilities or can lead to robots having

roles.

1.4 Conclusion

In this chapter, we saw a general introduction about mobile robots, how they can

be used more efficiently. The different types of systems, methods, algorithms and

approaches used in order to solve different problems faced by one of the main

applications of the mobile robot, which is motion planning.

We concluded that many methods are introduced in order to improve efficiency of

mobile robots in crowded unknown environments, the objective is to reach the final

destination by taking the shortest path without colliding with any static, dynamic

obstacle or any other robot since it may be a multi-robot environment.

This is why a hybrid system of graph search using A* Algorithm and based sensor

using an ultrasonic sensor for security has been chosen in order to improve our system

in a multi-robot unknown environment with a prior knowledge of static obstacles.

CHAPTER II
Robots hardware design

Chapter II: Robots hardware design

Page 16

In this chapter, the model of the robot which is implemented during our project is

discussed. Including the sensors allowing the robot to collect DATA from its

environment, to navigate safely and with high accuracy between dynamic and static

obstacles, what make it useful in some delicate applications like rescue or fire stopping.

As our project deals with a Hybrid Multi-robots platform; so, each robot needs to

communicate with the other robots and with central unit (PC) to exchange DATA and

collaborate their tasks. Hence, Wi-Fi modules are required and will be introduced at the

end of this chapter.

2.1 Differential drive kinematics

Many mobile robots use a drive mechanism known as differential drive. It consists

of 2 drive wheels mounted on a common axis, and each wheel can independently being

driven either forward or backward.

Table 2.1. The spinning direction and speed control of each robot wheel

The direction of

the robot

Direction of the

Left wheel

Direction of the

Right wheel

Speed of the left

comparing to the

right

Forward Forward Forward Equal

Right Forward Forward/Backward Greater

Left Forward/Backward Forward Less

Backward Backward Backward Equal

Figure 2.1: Differential Drive kinematics

Chapter II: Robots hardware design

Page 17

While we can vary the velocity of each wheel, for the robot to perform rolling

motion, the robot must rotate about a point that lies along their common left and right

wheel axis. The point that the robot rotates about is known as the ICC5 (see figure 2.1).

By varying the velocities of the two wheels, we can vary the trajectories that the

robot takes.

Because the rate of rotation ω about the ICC must be the same for both wheels, we

can write the following equations:

𝝎(𝑹 + 𝟏 𝟐⁄) = 𝑽𝒓

𝒘(𝑹 − 𝟏 𝟐⁄) = 𝑽𝒍

Where l is the distance between the centers of the two wheels, Vr , Vl are the right

and left wheel velocities along the ground , and R is the signed distance from the ICC to

the midpoint between the wheels. At any instance in time we can solve for R and ω:

𝑹 =
𝒍

𝟐

𝑽𝒍 + 𝑽𝒓

𝑽𝒓 − 𝑽𝒍
 ; 𝝎 =

𝑽𝒓 − 𝑽𝒍

𝒍
;

There are three interesting cases with these kinds of drives:

 If Vl = Vr, then we have forward linear motion in a straight line. R

becomes infinite, and there is effectively no rotation (ω is zero).

 If Vl = -Vr, then R = 0, and we have rotation about the midpoint of the

wheel axis (we rotate in place).

 If Vl = 0, then we have rotation about the left wheel. In this case R = l/2

same is true if Vr = 0.

Note that a differential drive robot cannot move in the direction along the axis (this

is a singularity). Differential drive vehicles are very sensitive to slight changes in velocity

in each of the wheels. Small errors in the relative velocities between the wheels can affect

5 Instantaneous Center of Curvature

(1)

(2)

(3)

Chapter II: Robots hardware design

Page 18

the robot trajectory. They are also very sensitive to small variations in the ground plane,

and may need extra wheels (castor wheels) for support.

2.1.1. Forward kinematics for differential drive robots

In figure 2.1, assume the robot is at some position (x, y), headed in a direction

making an angle θ with the X axis. We assume the robot is centered at a point midway

along the wheel axle. By manipulating the control parameters Vl, Vr, we can get the robot

to move to different positions and orientations. (note: Vl , Vr) are wheel velocities along

the ground). Knowing velocities Vl, Vr and using equation 3, we can find the ICC

location:

𝑰𝑪𝑪 = [𝒙 − 𝑹 𝒔𝒊𝒏(𝜽); 𝒚 + 𝑹 𝐜𝐨𝐬 (𝜽)]

And at time t + δt the robot’s pose will be:

[
𝒙′
𝒚′

𝜽′

] = [
 𝐜𝐨𝐬(𝝎𝜹𝒕) − 𝐬𝐢𝐧(𝝎𝜹𝒕) 𝟎
𝐬𝐢𝐧(𝝎𝜹𝒕) 𝐜𝐨𝐬(𝝎𝜹𝒕) 𝟎

𝟎 𝟎 𝟏

] [
𝒙 − 𝑰𝑪𝑪𝒙
𝒚 − 𝑰𝑪𝑪𝒚

𝜽

] + [
𝑰𝑪𝑪𝒙
𝑰𝑪𝑪𝒚
𝝎𝜹𝒕

]

This equation simply describes the motion of a robot rotating a distance R about its

ICC with an angular Velocity of ω.

2.1.2. Inverse kinematics of a mobile robot

In general, we can describe the position of a robot capable of moving in a particular

direction θt at a given velocity V (t) as:

{

 𝒙(𝒕) = ∫ 𝑽(𝒕) 𝐜𝐨𝐬[𝜽(𝒕)]𝒅𝒕

𝒕

𝟎

𝒚(𝒕) = ∫ 𝑽(𝒕) 𝐬𝐢𝐧[𝜽(𝒕)]𝒅𝒕
𝒕

𝟎

𝜽(𝒕) = ∫ 𝝎(𝒕)𝒅𝒕
𝒕

𝟎

For the special case of a differential drive robot like the one we create, the equations

become:

{

 𝒙(𝒕) =

𝟏

𝟐
∫ [𝒗𝒓(𝒕) + 𝒗𝒍(𝒕)] 𝐜𝐨𝐬[𝜽(𝒕)]𝒅𝒕
𝒕

𝟎

𝒚(𝒕) =
𝟏

𝟐
∫ [𝒗𝒓(𝒕) + 𝒗𝒍(𝒕)] 𝐬𝐢𝐧[𝜽(𝒕)]𝒅𝒕
𝒕

𝟎

𝜽(𝒕) =
𝟏

𝒍
∫ [𝒗𝒓(𝒕) − 𝒗𝒍(𝒕)]𝒅𝒕
𝒕

𝟎

(4)

(5)

(6)

(7)

Chapter II: Robots hardware design

Page 19

A related question is: How can we control the robot to reach a given configuration

(x, y, θ), this is known as the inverse kinematics problem.

Unfortunately, a differential drive robot imposes what are called non-holonomic6

constraints on establishing its position. For example, the robot cannot move laterally

along its axle. A similar nonholonomic constraint is a car that can only turn its front

wheels. It cannot move directly sidewise, as parallel parking a car requires a more

complicated set of steering maneuvers. So, we cannot simply specify an arbitrary robot

pose (x, y, θ) and find the velocities that will get us there.

For the special cases of vl = vr = v (robot moving in a straight line) the motion

equations

become:

[
𝒙′
𝒚′

𝜽′

] = [
𝒙 + 𝒗 𝐜𝐨𝐬(𝜽)𝜹𝒕
𝒚 + 𝒗 𝐬𝐢𝐧(𝜽)𝜹𝒕

𝜽

]

If vr = -vl = v, then the robot rotates in place and the equations become:

[
𝒙′
𝒚′

𝜽′

] = [

𝒙
𝒚

𝜽 + 𝟐𝒗𝜹𝒕 𝒍⁄
]

This motivates a strategy of moving the robot in a straight line, then rotating for a

turn in place, and then moving straight again as a navigation strategy for differential drive

robots.

2.1.3. Mapping angular wheel velocity to linear velocity

The left and right wheel velocities used above, Vl , Vr are linear velocities. We

actually control the wheels by specifying an angular velocity Vwheel for a wheel specified

in radians per second. Given Vwheel, we need to find out what the resulting linear velocity

for that wheel’s movement is. We define the following terms: rwheel: wheel radius. Drobot:

length of the differential drive wheel axle. Vwheel: magnitude of wheel velocity measured

in radians/sec. If we want the robot base to rotate by ɸ degrees (the robot is turning in

place), we need to find an equation for the amount of time t we need to run the wheel

motor at velocity Vwheel to turn the robot an angle of ɸ degrees. The wheel turns a linear

distance of rwheel . θ along its arc where θ is simply Vwheel . t.

6 In physics and mathematics is a system whose state depends on the path taken in order to

achieve it.

(8)

(9)

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/System

Chapter II: Robots hardware design

Page 20

The wheel will travel a distance equal to rθ along its arc (see figure 2.2). If we assume

a wheel velocity of Vwheel = 10 radians/sec, then the wheel will travel 10*8 = 80 mm in 1

sec, which is also equivalent to 0.08mm in 1 msec.

To determine the time to turn the robot a specified angle in place, we note that the

entire circumference C of the robot when it turns 360° is π Drobot.

Given a time t, the wheel will turn:

 𝑫𝒊𝒔𝒕𝒘𝒉𝒆𝒆𝒍 = 𝒓𝒘𝒉𝒆𝒆𝒍 ∗ 𝑽𝒘𝒉𝒆𝒆𝒍 ∗ 𝒕

𝑫𝒊𝒔𝒕𝒘𝒉𝒆𝒆𝒍

𝑪
=
 ∅

𝟐𝝅
 (∅ 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝒊𝒏 𝒓𝒂𝒅𝒊𝒂𝒏𝒔)

𝑽𝒘𝒉𝒆𝒆𝒍 ∗ 𝒓𝒘𝒉𝒆𝒆𝒍 ∗ 𝒕

𝑪
=
∅

𝟐𝝅

𝒕 =
∅𝑪

𝟐𝝅𝑽𝒘𝒉𝒆𝒆𝒍 ∗ 𝒓𝒘𝒉𝒆𝒆𝒍

 a b

Figure 2.2: a) Mapping angular velocity into linear velocity

b) Upper view of differential drive robot

(10)

Chapter II: Robots hardware design

Page 21

2.1.4. Dimensions of robots we are using

We must take into consideration that we are using three similar robots with

dimensions as mentioned shown in figure 2.4.

Figure 2.3: Measurement of the robot’s body

𝑫𝒓𝒐𝒃𝒐𝒕 = 𝟏𝟒𝒄𝒎

 𝒓𝒘𝒉𝒆𝒆𝒍 =
𝟔. 𝟓

𝟐⁄ 𝒄𝒎

2.2 Sensors

A sensor is a device which detects or measures a physical property and records,

indicates, or otherwise responds to it [11].

To make a robot interact with its environment we need actuators and sensors, and in

the following we are presenting some of the sensors that makes the robot see it

surrounding and calculate the distances between the robot and the obstacles to design a

map which will be the platform for planning a safe path from the starting point to the end

point.

2.2.1 Ultra-Sonic sensor

From its name it is a sensor that measure distance by using ultrasonic waves.

The sensor has an emitter that emit the wave and a receiver that receive the reflected

wave from the obstacle. It measures the distance to the obstacle by calculating the time

between the emission and reception.

a. Features of US sensor

 It detects even the transparent obstacles because the ultrasonic waves are reflected

off a glass or liquid surface back to the receiver.

Chapter II: Robots hardware design

Page 22

 Detection is not affected by accumulation of dust or dirt what make it resistant to

dirt and mist.

 The detection is stable even for complex shaped obstacles.

b. Its functionality

It emits a 40000Hz ultrasonic signal which travels through the air and if there is an

object or obstacle on its path it will bounce back to the module as explained in figure 2.4.

Figure 2.4: Features of Ultrasonic sensor HC-SR04

The distance can be calculated as follow:

𝑫 = 𝑻′ ∗ 𝑪

𝑻′ = 𝟏
𝟐⁄ ∗ 𝑻

where D is the distance, T is the time between the emission and reception, and C is

the sonic speed. (T’ is the time needed to travel half of the distance forth or back).

 Fig. 2.5: Connecting ultrasonic sensor to the ESP32 card

Chapter II: Robots hardware design

Page 23

The HC-SR04 Module has 4 pins, as illustrated in Fig 2.5, which are:

- VCC: +5VDC

- Trig: Trigger (INPUT)

- Echo: Echo (OUTPUT)

- GND: GND

The Ground and the VCC pins of the module needs to be connected to the Ground

and the 5 volts pins on the controller Board respectively and the trig and echo pins to any

Digital I/O pin on the controller Board [12].

In order to generate the ultrasonic signal we set the Trig on a High State for 10 µs.

That will send out an 8 cycle sonic burst which will travel at the speed sound and it will

be received in the Echo pin as explained in figure 2.6. The Echo pin will output the time

in microseconds the sound wave traveled.

Figure 2.6: Generate the ultrasonic signal

2.2.2 Tachometer and encoder

To determine performance and efficiency of DC motors, it helps to have a tool that

can measure or calculate the speed, angle, or count of a rotating object.

Tachometers measure rotational speed, which is particularly valuable for robot

building. The speed of the motors determines the speed of the robot. Before building an

entire robot around a pair of motors, you want to know how fast the motor shaft turns at

the highest and lowest voltages supplied. And, if the motor speed is significantly reduced

Chapter II: Robots hardware design

Page 24

under the load of the robot, that tells you the robot weighs too much for these motors (or

gearheads) or that an unexpected source of friction (such as parts rubbing together) is

degrading performance.

For very slow RPMs7, you may need a device that counts the number of rotations

over a longer period of time, because many digital tachometers aren’t programmed to

detect speeds slower than 10-60 RPM. An alternative is to use an encoder disk with many

more marks, to fool the tachometer into thinking the wheel, gear, or shaft is spinning

much faster. In either case, you simply divide the final number by the amount of time

taken or the number of dark marks on the encoder disc.

Encoders are usually either encoder disks with visible marks and photosensors, or

metal/magnets with magnetic field (Hall Effect) sensors.

As an encoder we are using a 20 holes disks printed using a 3D printer of the club

(WAMEEDH) and FC-03 tachometer data sheet. [13]

2.2.2.1 FC-03 Tachometer

It is a widely used tachometer in robotics applications, with:

a) Features

 Current: Around 15mA

 Operating voltage DC 3.3V - 5V

 Output signal: Digital switching outputs (0 and 1)

 Dimensions: 3.2cm x 1.4cm

 Imported groove coupler sensor

 A fixed bolt hole for easy installation

 Used wide voltage LM393 comparator

 Groove width of 5mm

7 Revolution per minute

Chapter II: Robots hardware design

Page 25

b) Specifications

 DO output interface can be directly connected to a microcontroller IO port, if

there is a block detection sensor, such as the speed of the motor encoder can

detect.

 DO modules can be connected to the relay, limit switch, and other functions, it

can also with the active buzzer module, compose alarm.

c) Pin-out

Table 2.2: FC-03 Pin Description

Pin Function

Vcc Connect to the positive 3.3V - 5V power supply

GND Ground

DO TTL switch signal output

AO N/A

Figure 2.7 FC-03 Tachometer

2.3 Actuators

To make the robots move we need to use two dc motors each one associated with a

wheel, and we need to add L293D motor driver module to amplify the current since the

controller can’t generate enough current to run the motors.

Chapter II: Robots hardware design

Page 26

2.3.1 L293D

L293D is a dual H-bridge motor driver integrated circuit (IC). Motor drivers act as

current amplifiers since they take a low-current control signal and provide a higher-

current signal. This higher current signal is used to drive the motors.

L293D contains two inbuilt H-bridge driver circuits. In its common mode of

operation, two DC motors can be driven simultaneously, both in forward and reverse

direction. The motor operations of two motors can be controlled by input logic at pins 2

& 7 and 10 & 15. Input logic 00 or 11 will stop the corresponding motor. Logic 01 and

10 will rotate it in clockwise and anticlockwise directions, respectively.

Enable pins 1 and 9 (corresponding to the two motors) must be high for motors to

start operating. When an enable input is high, the associated driver gets enabled. As a

result, the outputs become active and work in phase with their inputs. Similarly, when

the enable input is low, that driver is disabled, and their outputs are off and in the high-

impedance state. [14]

Figure 2.8: L293D PIN OUTS

http://www.engineersgarage.com/electronic-circuits/h-bridge-motor-control

Chapter II: Robots hardware design

Page 27

Table 2.3: L293D Pin Description

PIN

N°

Function Name

1 Enable pin for motor 1, Active high Enable

1, 2

2 Input 1 for Motor 1 Input 1

3 Output 1 for Motor 1 Output

1

4 Ground (0V) Ground

5 Ground (0V) Ground

6 Output 2 for Motor 1 Output

2

7 Input 2 for Motor1 Input 2

8 Supply voltage for Motors, 9-12V (up to 36V) Vcc2

9 Enable pin for Motor 2, active high Enable

3,4

10 Input 1 for Motor 1 Input 3

11 Output 1 for Motor 1 Output

3

12 Ground (0V) Ground

13 Ground (0V) Ground

14 Output 2 for Motor 1 Output

4

15 Input 2 for Motor 1 Input 4

16 Supply voltage, 5V (up to 36V) Vcc1

Chapter II: Robots hardware design

Page 28

2.3.2 DC motors

Figure 2.9: DC Motor

DC motor reducer, single axis, with DC 3V operating voltage and a RPM of

125R/minute, this gear box is applied for tracing car or robot. With plastic construction

and colored in bright yellow, the DC gear motor measures approx. 2.5 inch long, 0.85

inch wide and 0.7 inch thick and a Shaft Size of 8mm x 5.4mm diameter and a Weight

of 17gr.

Table 2.4: Specification of the DC motor that we are using

Motor specifications

Motor type Gearbox

Motor voltage 3-9 V

Gear Ratio 48:1

No-Load Current at 3V 0.12A

No-Load Speed at 3V 110 RPM

Stall Current at 3V 0.45 A

Stall Torque at 3V 0.26 kg-cm

Figure 2.10: Interfacing L293D and 2 DC motors with ESP32

Chapter II: Robots hardware design

Page 29

2.4 Wireless communication

A multi-robots system requires a communication support to transfer commands and

exchange DATA between robots in both centralized and decentralized control. The best

way to do that is by introducing a wireless communication module via Bluetooth or Wi-

Fi.

2.4.1 Wi-Fi

Wi-Fi or IEEE 802.11x, shown in figure 2.7, is a technology for radio wave wireless

local area networking that provide wireless high-speed Internet and network connections

based on the IEEE 802.11 standards [15]. Wi-Fi module establishes connection between

sender and receiver using radio frequencies (RF) within the electromagnetic spectrum

(2.4GHz and 5GHz). When an RF current is supplied to an antenna it creates an

electromagnetic field able to propagate through the space.

2.4.2 ESP 32 integrated Wi-Fi module

It is a hybrid Wi-Fi & Bluetooth Chip ESP32 can perform as a complete standalone

system or as a slave device to a host MCU, reducing communication stack overhead on

the main application processor. ESP32 can interface with other systems to provide Wi-

Fi and Bluetooth functionality through its SPI / SDIO or I2C / UART interfaces.

2.5 The ESP32-WROOVER controller

ESP32-WROOM-32 is a powerful, generic Wi-Fi + BT + BLE MCU module that

targets a wide variety of applications, ranging from low-power sensor networks to the

most demanding tasks, such as voice encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WDQ6 chip. The chip embedded is

designed to be scalable and adaptive. There are two CPU cores that can be individually

controlled, and the CPU clock frequency is adjustable from 80 MHz to 240 MHz The

user may also power off the CPU and make use of the low-power co-processor to

constantly monitor the peripherals for changes or crossing of thresholds. ESP32

integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors,

SD card interface, Ethernet, high-speed SPI, UART, I²S and I²C. [16]

Chapter II: Robots hardware design

Page 30

Table 2.5: ESP32-WROOM-32 Specifications

Categories Items specifications

Certification

RF certification FCC/CE-

RED/IC/TELEC/KCC/SRRC/NCC

Wi-Fi

certification

Wi-Fi Alliance

Bluetooth

certification

BQB

Green

certification

RoHS/REACH

Test Reliability HTOL/HTSL/Uhast/TCT/ESD

Wi-Fi

Protocols 802.11 b/g/n (802.11n up to 150

Mbps)

A-MPDU and A-MSDU

aggregation and 0.4 µs guard interval

support

Frequency

range

2.4 GHz ~ 2.5 GHz

Bluetooth

Protocols Bluetooth v4.2 BR/EDR and BLE

specification

Radio NZIF receiver with -97 dBm

sensitivity

Class-1, class-2 and class-3

transmitter

AFH

Audio CVSD and SBC

Hardware

Module

interfaces

SD card, UART, SPI, SDIO, I2C,

LED PWM, Motor PWM, I2S, IP, pulse

counter, GPIO, capacitive touch sensor,

ADC, DAC

On-chip sensor Hall sensor

Integrated

crystal

40 MHz crystal

Chapter II: Robots hardware design

Page 31

Integrated SPI

flash

4 MB

Operating

voltage/Power supply

2.7 V ~ 3.6 V

Operating

current

Average: 80 Ma

Minimum

current delivered by

power supply

500mA

Recommended

operating temperature

range

-40 °C ~ +85 °C

Package size (18.00±0.10) mm × (25.50±0.10)

mm × (3.10±0.10) mm

Figure 2.11: ESP32-WROOM-32 Pin Layout (Top View)

Chapter II: Robots hardware design

Page 32

2.6 Building the robots circuit

After introducing each part alone and how to interface it with ESP32, now we

introduce the final circuit of the robots taking in consideration that all the robots share

the same circuit shown in the figure below:

Figure 2.12: Final circuit

2.7 Conclusion

In this chapter we discussed in details the model of differential drive robot the one

we are using for simulation and also the different sensors for obstacles detection, also the

different communication technologies. The ultrasonic sensor is used because it is cheap

and reliable for small indoor application where no interference with other devices, and

the Wi-Fi module because it offers a faster full duplex DATA transfer.

CHAPTER III
Robots software design

Chapter III: Robots software design

Page 34

In this chapter, the software used to run our system, the algorithm implemented to

generate the optimal path for each robot and the collision avoidance system based on

priorities will be introduced.

The connection between the two poles of our system, which are the Central unit (a

computer running MATLAB) and robots (controlled by an ESP32) will be also

established.

The last part will describe the robots behavior of robots after receiving the optimal

paths using ultrasonic sensors to avoid any intruder obstacle.

3.1 Environment construction using MATLAB

There exist many approaches that allow us to construct a Map, plot robots/obstacles

& run the chosen Algorithm in order to calculate and generate the best path for each

robot. However, in order to ensure a quick calculation and stable communication between

the software & hardware parts, we have used Matlab software that takes into account

mathematical calculation and modeling part to allow optimal results; and the

communication part to send/receive data from/to each robot.

Figure 3.1 gives an illustration example where a 10x10 Map with 3 start/end points

for our multi-robot system and some random obstacles are generated.

Figure 3.1: Multi robot formation in 2D Map plot

Chapter III: Robots software design

Page 35

After entering the number of desired robots, the user can place any element (Robots,

Goals, Obstacles) relative to the real world with a simple mouse click in the environment

map. Since a warehouse is simulated, 2D environment case is generated.

At this moment, a Closed & Open Matrices are generated to store Occupied/free

vertices as mentioned in chapter I.

3.2 Static/dynamic obstacles and Collision avoidance

There exist many approaches that allow a multi-robot system to navigate through a

map without any collision. According to their obstacle detection and avoidance system

algorithms and efficiencies, they can be classified from the simplest one (such as sensor

based system) to the most complicated one (like image processing).

Since we are supposing that all obstacles are declared in the Map, an Ultrasonic

sensor is added to each robot in order to deal with intruders and get high efficiency

navigation.

This solution is generated by two parts:

i. The computer part, which represents the central unit and the Master part of our

system, it executes the given algorithm and generates an optimal path for each robot by

respecting priorities between robots (The priority system is given by order from the first

robot with the highest one till the last robot with the lowest priority).

ii. The robot part, which represents the central unit’s slave, will executes in parallel

the given path and checks (using ultrasonic sensors) for intruder obstacles.

3.2.1 Computer level Obstacle Detection

The space configuration production

Since the map is in 2D integer array, the MATLAB code generates and assigns an

integer number for each cell, so the example above shown in Figure 3.1 can be seen as a

matrix as follow:

Chapter III: Robots software design

Page 36

[

2 2 2 2 2 2 2 2 2 2
2 −1 −1 4 2 2 2 2 2 2
2 −1 0 2 2 −1 −1 −1 −1 2
2 −1 −1 −1 2 2 2 2 −1 2
2 2 −1 −1 2 −1 −1 1 −1 2

−1 2 2 2 2 −1 −1 2 2 2
−1 2 −1 −1 2 2 2 2 −1 2
2 2 2 2 2 −1 2 2 −1 −1
2 −1 6 2 −1 −1 −1 2 −1 −1
2 2 2 2 −1 5 2 3 2 2]

Figure 3.2: Matrix representation of 10x10 Map

Such that integers inside the matrix can be interpreted as follow:

 Number -1 : Obstacle

 Number 0 : Goal 1

 Number 1 : Robot 1

 Number 2 : Empty

 Number 3 : Goal 2

 Number 4 : Robot 2

 Number 5 : Goal 3

 Number 6 : Robot 3

Once data is saved into a 10x10 matrix, Obstacles (Number -1 in our case) will be

stored into a 2xn CLOSED list before the algorithm can start to search for the shortest

path from “Start” point (Number 1, 4 and 6 for Robot 1, 2 and 3 respectively) till the

“Finish” point (Number 0, 3 and 5 for robot 1, 2 and 3 respectively).

The 2xn CLOSED list represents all cells that have been explored including

obstacles, while the OPEN list represents all successive cells that are yet to be explored.

3.2.2 Path planning algorithm

3.2.2.1 Case of single robot

In the case of one robot the A* algorithm is used. So, the “Start” cell is added to

OPEN list as initial value, the function used to find the closest cell to the “Finish” point

is {f (n) = g (n) + h (n)}, while g (n) is the exact cost of the path from the starting

point to any cell n, and h (n) the heuristic estimated cost from the cell n to the goal as

explained in Chapter I.

Chapter III: Robots software design

Page 37

Once the closest cell with the smallest f (n) is found, the actual cell is removed from

OPEN list and added to CLOSED list, from this point, the new cell is added to OPEN list

and so on, until it reaches the Finish cell.

The flowchart given in figure 3.3 summarizes the algorithm A* used for space

configuration in case of single robot as explained in this section.

Figure 3.3: Flowchart of A* Algorithm

3.2.2.2 Case of Multi-robots

Here, the same thing is done as before, except that if two or more than two robots

meet in a cell at the same time, a system of priorities takes action, the robots with a lower

priority wait in the cell located before the intersection cell for a certain delay in order to

let robots with higher priority keep going.

Chapter III: Robots software design

Page 38

The result of our previous example using this method is shown in figure 3.4.

Figure 3.4: Generated path for Multi-robot formation

3.3 Communication Part

To make a Multi-robot hybrid system navigate without collision in an optimal time

we need to make the robots communicate between them and with a computer to share the

environment data and their positions to avoid conflict in following the paths generated

by MATLAB.

First, the central unit has to be connected to all ESP32s via a Wi-Fi router, as shown

in figure 3.5, which will assign IP addresses automatically.

Figure 3.5: Multi-Robot Network model

Chapter III: Robots software design

Page 39

Next, the connection between MATLAB and ESP32 using ARDUINO IDE is

established using TCP/IP Protocol.[17]

Once the connection is established, each ESP32 will stay in listening mode waiting

for TCP packet to be received from MATLAB containing matrix of the generated path

associated with a start/stop signal.

Hence, figure 3.6 shows an ESP32 module in listening mode, before receiving data:

Figure 3.6: ESP-32 in listening mode

whereas, figure 3.7 show the matlab part when sending data and figure 3.8 shows an

ESP32 module returning to a listening mode after receiving data.

Figure 3.7: MATLAB command window after sending DATA.

Chapter III: Robots software design

Page 40

Figure 3.8: Returning to listening mode after reception/execution

Each packet is received and executed by ESP32 to start navigation while it is in

listening mode. At that time, MATLAB enter in listening mode waiting for feedback.

3.4 Control part of robot

After explaining the environment construction strategy, path generation and how to

send it to robots; now, the execution part will be discussed in this section.

The path is generated in the form of two vectors, the first one for the X coordinates

and the second one for the Y coordinates, those two must be concatenated with Start/Stop

byte to form the TCP packet to be sent from MATLAB to robots as shown in the table

below.

Start/Sto

p

X values Y values

Chapter III: Robots software design

Page 41

The ESP32 of each robot stays in listening mode waiting for packet to be received.

Once a packet arrives, the robot start processing it by checking the first byte if it matches

the Start or Stop code, and it returns to listening mode. If the byte contain Stop code, the

robot stops and sends back its position to MATLAB, otherwise it converts the data vector

into a 2*N matrix and initialize a counter equal to the length of the path, to save the

movements of the robot for future use.

All the robots can move in eight directions [-135° -90° -45° 0° 45° 90° 135° 180°],

the starting one is always considered as 0° and at each iteration the robots calculate the

angle to move with by subtracting the actual position/angle from the next position/angle

in order to adjust their orientation and move to the next cell, until they reach end points,

to make calculations easier and remove time factor, we made robots travel from each cell

to the next one with same amount of time by making them move sqrt(2) faster when they

move diagonally (Pythagoras theorem), with this operation, it takes the same amount of

time traveling diagonally or Horizontally/Vertically.

At the same time, the robots keep looking for dynamic obstacles using ultrasonic

sensors in front of them. When an obstacle is detected the robot with the lowest priority

frees the path for the robot with higher priority, by checking the two other ultrasonic

sensors on the right side and the left one.

The ultrasonic sensor is useful when the paths of two robots or more overlap, if the

robots are going in the same direction the robot of lowest priority need to wait for the

others to pass, but if they are going in opposite direction the robot with lower priority

frees the road for the other robots by checking if there is enough space on the right side.

The robot turns right and moves a sufficient distance and waits enough in order to lets

the others pass, but if the right side of the robot is not free it will checks for the left one

and do the same thing otherwise the robot goes back by reversing its path cell by cell and

each time checks for the free space on both sides.

The flowcharts below (figure 3.9, figure 3.10 and figure 3.12) give a clear

understanding of the program.

Chapter III: Robots software design

Page 42

Figure 3.9: Flowchart of the entire program

The flowchart in figure 3.10 explain in more details how the robots with lower

priority will free the path for the others and after that they return to their previous

position. And the one in figure 3.12 explain how robots go to next cell by calculating the

direction of the next move and moving forward for specific distance calculated using

Pythagoras theorem.

Chapter III: Robots software design

Page 43

Figure 3.10: Flowchart of Path processing

Figure 3.11: Calculation of future orientation

X(i+1) - x(i)=-1

Y(i+1) - y(i)=1

Chapter III: Robots software design

Page 44

Figure 3.12: Flowchart of Movement/direction processing

Chapter III: Robots software design

Page 45

3.5 Conclusion

In this chapter, we introduced the simulation part of our project, we saw how to

proceed with a Multi-robot system by presenting flowchart that describe the A*

Algorithm, the path generation and robot behavior after receiving the path, in order to

eliminate several cases of possible collisions and conflicts.

Those optimizations will be discussed deeper in chapter IV, in order to compare the

simulation results with the experimental ones.

CHAPTER IV
Results and discussions

Chapter IV: Results and discussions

Page 47

In this chapter, we are presenting the results of the simulation and giving some

examples associated with tests results to model some real life scenarios; so that, the

efficiency of our system will be validated and in order to escape some critical situation.

After that, we are giving some evaluation about the speed of our algorithm. At the end,

we are suggesting some features to be added to make a more sophisticated system.

4.1. Software Implementation
The simulation part is working perfectly without any problem during the execution,

it would be good to get the same results during the implementation. However in real

world, it is not the case where a lot of constraint appears disallowing an optimal

navigation from the starting points to the targets, and especially in a crowded

environments. Thus, to get a very smooth navigation with high accuracy, we need to

minimize the error factor.

In order to do so, both software and hardware (Computer and robots) must be well

calibrated and optimized, the connection between the two parts must be stable and

reliable using a determined router (Wireless Network is known to be more vulnerable

than wired network).

The MATLAB Software guarantees a good flexibility for multiple Operating

Systems, in addition to its reliability. All these factors will be presented in this chapter

by showing how they have been applied.

4.1.1. Multi-robot formation strategy
Some problems have been encountered during the implementation part, the most

important ones were the collision point and obstacle avoidance in case of a non-declared

obstacle facing one or several robots. Fortunately, some of them can be treated by adding

some algorithms, such as collision point avoidance algorithm in order to reduce the work

between robots.

4.1.1.1 Collision point treatment

Since we are modeling a warehouse, we suppose that our robots are moving in a 2D

environment composed of cells. An algorithm must be introduced in order to expand the

Chapter IV: Results and discussions

Page 48

original one and take into consideration dynamic obstacles (other robots in our case or

humans). Moreover, in order to increase efficiency and flexibility of our work, we

allowed the diagonal displacement that permits the system to win time and decrease

number of rotations in case of a long diagonal displacement; hence, prevent robots from

moving horizontally/vertically each time to reach the final cell giving a smooth

navigation in 8 directions as shown in figure 4.1.

 -a- -b-

Figure 4.1: a) Path planning using four directions

b) Path Planning using eight directions

In figure 4.1, the path cost using method -b- is 29.29% less than the path cost of

method -a-, which includes an equivalent of saving one third of the time/power

consumption.

However, allowing each robot to run in diagonal direction drives each of them to

pass through a diagonal row of cells with a thickness of one cell as shown if figure 4.2,

which will be considered as a path with an incremented risk of collisions.

Figure 4.2: Diagonal obstacles with thickness of one cell

In order to fix this issue, we have to increment the thickness of the diagonal row by

one as shown in figure 4.3.

Chapter IV: Results and discussions

Page 49

Figure 4.3: Diagonal obstacles with thickness of two cells

Now, one more problem at collision point treatment may happen for diagonal

displacement, which will require 2 different algorithms in order to ensure a safe Optimal

path.

1) First, let’s suppose a horizontal/vertical collision:

Figure 4.4: Horizontal/Vertical Multi-robot collision

At first glance, the horizontal/vertical collision always occurs in a given cell which

may be the same as the diagonal collision in some cases. From this, the following

algorithm which takes as reference the collision cell will be executed in order to generate

the Optimal Path by taking into account the priority of each robot.

Chapter IV: Results and discussions

Page 50

Figure 4.5: Pseudo-code of the Horizontal/vertical collision avoidance Algorithm

The result of the two optimal paths is illustrated in figure 4.6.

Figure 4.6: Optimal paths depending on Horizontal/Vertical collision cell

As shown in figure 4.6, when i = 3, the collision cell at [5,5] (i represents the length

of each path generated, i_max = 5 for Optimal_path and i_max = 6 for Optimal_path2)

is detected; hence, while the first robot (Optimal_path) continues its path without any

stop due to its priority, the second robot (Optimal_path2) will wait one more time at i=3

([x,y]=[5,6] at i = 3) since it has a lower priority than Robot 1.

Chapter IV: Results and discussions

Page 51

2) Now, let’s suppose a diagonal collision, but this time, the collision doesn’t occure

inside a cell, but between two diagonal cells, since no collision cell exists to use as

reference, an alternative algorithm takes place to allow the good execution of system,

let’s take an example given in figure 4.7.

Figure 4.7: Diagonal Multi-robot collision

As we can see, the collision doesn’t depend on a specific cell, the following figure

represents an alternative solution that takes into account each cell before and after the

collision regarding to each Optimal path is executed to optimize time and path generation

algorithm.

Chapter IV: Results and discussions

Page 52

Figure 4.8: Pseudo-code of the diagonal collision avoidance Algorithm

The result of this generated Optimal paths is given in figure 4.9.

Figure 4.9: Optimal paths depending on Diagonal collision

As we can see, the same method as Horizontal/Vertical collision is used in order to

organize the traffic by taking into consideration priorities in a multi-robots environment.

3) The final collision case that may occur is the tunnel case, or to do simple, two robots

facing each other, this case is more complex to be executed as an algorithm since it

Chapter IV: Results and discussions

Page 53

is better to handle the collision in real-time and a very large map can make the system

crash while searching for collision path. Fortunately, the following pseudo-code

(Figure 4.10) which represents an alternative algorithm that should be executed by

all robots using ultrasonic sensors while running their own optimal path is used to

optimize the system.

Figure 4.10: Pseudo code of tunnel collision avoidance Algorithm

4.1.1.2 Execution time

In this part, the execution time spent by our algorithm is calculated. A* is used to

find the optimal paths from starting point to the target for the three robots. To do that

have considered a map with some random obstacles as shown in table 4.1.

Table 4.1: Samples of the time needed to calculate the paths

n*n cells

Length paths Total number of

traversed nodes

Time taken by the A*

algorithm (ms)

R1 R2 R3 R1 R2 R3

6*6 6 6 6 20 19 16 103.394

20*20 19 19 17 93 129 114 351.554

50*50 48 33 19 318 259 161 560.853

100*100 57 11 10 977 73 50 1.466x103

Chapter IV: Results and discussions

Page 54

 n*n cells represent the map size

 Length Paths represent the length path of each robot from the starting to the Final

point.

 Total number of traversed nodes represent the OPEN list of how much nodes the

algorithm traversed before reaching the Final point.

 The last column represents the time Taken by the A* algorithm to calculate and

generate the Optimal Paths.

Remark: As we can see, the time needed to traverse and calculate the optimal path

for each robot depend on the path length of each of them. The longer is the path, the

bigger will be the time needed to execute the algorithm.

4.2. Implementation results
In order to ensure a good execution of the given path as explained before, each robot

must translate the given information send from the unit center and received in form of

packets, the vector containing information about the path inside each packet will be read

by the algorithm being executed by each robot.

In figure 4.11, we are implementing a case where two robots are navigating in

environment containing some random obstacles. We are giving a straight line path for

the first one, the one with the highest priority, and a complex path for the second one

which has lower priority. The generated path cells are given in figure 4.12.

Figure 4.11: 2D environment with two robots and some random obstacles

Chapter IV: Results and discussions

Page 55

Obstacles

Robot 2

Robot 1

Free Nodes

6x6 Map

Goal 2

Goal 1

Figure 4.12: Optimal Paths including dynamic/static avoidance

Applying this example in real world, we get the following results:

a

 b c

Chapter IV: Results and discussions

Page 56

d e

Figure 4.13: pictures a, b, c, d and e show the behavior of the robots during the

implementation

The following Figure 4.13 represents the displacement of a multi-robot system from their

starting point “picture a” successively until the final destination “picture e” with a

collision avoidance case at “picture c”, while following table (table 4.2) represents the

error factor at each iteration:

Table 4.2: comparison of implementation results with simulation results for Robot 1

Steps X Y Distance error1 (cm)

a 4 5 0

b 4 4 3.4

c 4 3 5.7

d 4 2 9.6

Table 4.3: comparison of implementation results with simulation results for Robot 2

Steps X Y Distance error (cm)

a 2 4 0

b 3 3 3.8

c 3 3 3.8

d 4 3 6.1

e 5 2 8.6

Chapter IV: Results and discussions

Page 57

As it is shown in table 4.2 and table 4.3, the error factor from the center stay almost

the same, however, the longer is the path, the bigger will be the error factor at the end of

the Optimal Path execution.

The result is that the error factor is directly proportional to the direction changes and

path length.

4.3. Problems and alternatives

Even if everything is working well in simulation part, some problems have been

encountered during the implementation part. The two major problems were the lack of

precision for the two encoders of the two robots, which drives the robot most of time to

deviate from its real orientation, and the power supply which is not stable since we are

using a battery for a better mobility. These two problems increase the error factor by

increasing path length.

An alternative solution was introduced in order to decrease the error factor. A closed

loop was added for the encoder part; so, each robot is actualizing its power in order to

synchronize the two wheels and get an acceptable result even if it’s not precise at 100%.

For the battery part, the PWM (Pulse-width Modulation) is used to reduce battery

consumption and get the desired supply. Since a low supply may not be sufficient to drive

the dc motor because of the weight, and a higher supply leads to spinning wheels which

is a major problem for orientation accuracy; so, PWM is a good solution to regulate the

power consumption.

Eventually, the error factor can also be reduced using a more accurate/expensive

equipment.

4.4. Conclusion

In this chapter, the implementation of the simulation part gave the expected results

with an acceptable error since the robots are executing the preplanned optimal paths

without collision, by dividing the software between the computer and robots, the system

seems to be more autonomous and robust since robots can follow their own path even if

the central unit is disconnected, hence losing the central unit or any robot doesn’t mean

losing the entire system.

Conclusion

 Page 58

General Conclusion

In this project, we focused on multi robot hybrid navigation system with unknown

obstacles, Based on modified A* algorithm and ultrasonic sensors. We call it a hybrid

system because, it starts as a centralized system where the PC is the central unit that do

all the calculations and send it to robots. After that, the work of the PC stops and the

relation between robots become a peer to peer relation, where the robots are autonomous

but they need to communicate with each other to check the priorities.

As it seems, Artificial intelligence is broadening its path and use to excel more in

future applications, and experts said that the machine will replace the humans, to perform

more and more sophisticated tasks with high efficiency. What bring to our minds the

word efficiency, which is the main subject of all the studies to make systems work with

optimal resources and give perfect results to save time and money.

For this purpose, we used a modified A* algorithm, after searching for the optimal

path from start to destination point for each robot, the modified part of the algorithm

takes into account the collision point at the same moment “T” to makes changes on less

prioritized robots as explain before, this algorithm could be associated with other

algorithms to make the navigation smooth.

At the end, the results of the simulation where perfect, the program was executed in

an optimal time without bugs and it could handle until 3 robots in a map of 100*100 and

a great number of obstacles. The implementation part was also good, the robots were

navigating from starting to finish point without collision with static obstacles/robots with

respect of priorities. We had some error due to the hardware, the robots arrived at the

target points with some deviation from the center of the cell, the reason for that was

discussed before and we proposed some ideas to make it more precise.

We also proposed some features and algorithms that can be added or modified to

make the system more intelligent and decrease the cost.

 Page 59

Future expansion

For future researches, we suggest making a decentralized system that could handle

a very large number of robots, those robots are working together to increase the speed of

scanning their environment quickly by combining the scan results of all of them, this

work allows to design a map for unknown 2D/3D environments using high efficiency

and wide range sensors that span 360° like the LiDAR. This feature will help for space

discoveries and interventions in dangerous areas.

Since this system has been optimized for a 2D even environment, a RADAR can

also be added in order to make the multi-robot system more flexible in a complex

environment, such as 3D uneven environments with bumps.

The A* algorithm can also be combined with Potential Field/Bug 0 algorithms for

smooth turns when passing near obstacles.

In the other hand, we need to make other studies to make a more stable control

system for the motors and energy efficiency and speed.

Page 60

References

[1] Development and Implementation of Even And Uneven Environment Navigation Strategy by

BELKALEM JUGURTHA and ABED MOHAMMED AMINE in 2016 at IGEE (Boumerdes).

[2] Multi-robots navigation in communicating environment by MAOUCH Bilel and BOUCHAREB

Omar Farouk in 2018 at IGEE (Boumerdes).

[3] Handbook of Research on Emerging Digital Tools for Architectural Surveying, Modeling, and

Representation by Stefano Brusaporci –University of L’Aquila, Italy.

[4]Tzafestas SG. Introduction to mobile robot control. London: Elsevier, 2013.

[5] H. M Choset. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT press,

2005.

[6] Guo J, Gao Y and Cui G. Path planning of mobile robot based on improved potential field. Inform

Technol J 2013; 12(11): 2188–2194.

[7]Automated generation of Geometrically-Precise and Semantically-informed Virtual Geographic

Environments Populated with Spatially-Reasoning Agents – Mehdi Mekni

[8] K. N. McGuire, G.C.H.E. de Croon and K. Tuyls, A Comparative Study of Bug Algorithms for

Robot Navigation

[9] Dave Ferguson and Anthony Stentz, Technical Report CMU-TR-RI-05-19,The Field D*

Algorithm for Improved Path Planning and Replanning in Uniform and Non-Uniform Cost

Environments

[10] Robot Motion Planning, Jean-Claude Latombe, Stanford University.

[11] Pioneer 3 Operations Manual with MobileRobots Exclusive Advanced Robot Control &

Operations Software, Pioneer 3 Operations Manual, Version 3, MobileRobots Inc, January 2006.

[12] Ultrasonic Ranging Module HC - SR04, datasheet, https://www.mouser.com/ds/2/813/ HCSR04-

1022824.pdf

[13] http://androminarobot-english.blogspot.com/2017/03/encoder-and-arduinotutorial-about-ir.html.

[14] Datasheet L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 −

REVISED NOVEMBER 2004

[15] Garber, Megan (2014-06-23). "'Why-Fi' or 'Wiffy'? How Americans Pronounce Common Tech

Terms". The Atlantic. Archived from the original on 2018-06-15.

[16] ESP32-WROOM-32 Datasheet Version 2.8 Espressif Systems Copyright ©

2019/www.espressif.com

 [17] https://community.cisco.com/t5/networking-documents/tcp/ta-p/3114870 .

https://www.mouser.com/ds/2/813/%20HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/%20HCSR04-1022824.pdf
http://androminarobot-english.blogspot.com/2017/03/encoder-and-arduinotutorial-about-ir.html
https://community.cisco.com/t5/networking-documents/tcp/ta-p/3114870

