DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10089

Titre: Toward an automatic detection of cardiac structures in short and long axis views
Auteur(s): Laidi, Amel
Mohammed, Ammar
El Habib Daho, Mostafa
Mahmoudi, Said
Mots-clés: Cardiac MRI Segmentation
Interpretability
Particle Swarm Optimization
Residual Network
Shape Descriptors
Date de publication: 2023
Editeur: Elsevier
Collection/Numéro: Biomedical Signal Processing and Control/ Vol.79 (2023);pp. 1-11
Résumé: Objective: This work aims to create an automatic detection process of cardiac structures in both short-axis and long-axis views. A workflow inspired by human thinking process, for better explainability. Methods: we began by separating the images into two classes: long axis and short axis, using a Residual Network model. Then, we used Particle Swarm Optimization for general segmentation. After segmentation, a characterization step based on shape descriptors calculated from bounding box and ANOVA for features selection were applied on the binary images to detect the location of each region of interest: lung, left and right ventricle in the short-axis view, the aorta, the left heart (left atrium and ventricle), and the right heart (right atrium and ventricle) in the long axis view. Results: we achieved a 90% accuracy on view separation. We have selected: Elongation, Compactness, Circularity, Type Factor, for short axis identification; and:Area, Centre of Mass Y, Moment of Inertia XY, Moment of Inertia YY, for long axis identification. Conclusion: a successful separation of long axis and short axis views allows for a better characterization and detection of segmented cardiac structures. After that, any method can be applied for segmentation, attribute selection, and classification. Significance: an attempt to introduce explainability into cardiac image segmentation, we tried to mimic the human workflow while computerizing each step. The process seems to be valid and added clarity and interpretability to the detection
URI/URL: https://doi.org/10.1016/j.bspc.2022.104187
https://www.sciencedirect.com/science/article/pii/S1746809422006413
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10089
ISSN: 1746-8094
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Laidi Amel.pdf2,96 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires