Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10092
|
Titre: | Existence of solution for a class of heat equation involving the 1-Laplacian operator |
Auteur(s): | Alves, Claudianor O. Boudjeriou, Tahir |
Mots-clés: | Degenerate parabolic equations Galerkin methods Nonlinear parabolic equations |
Date de publication: | 2022 |
Editeur: | Elsevier |
Collection/Numéro: | Journal of Mathematical Analysis and Applications/ Vol.516, N°2 (2022);pp. 1-26 |
Résumé: | This paper concerns the existence of global solutions for the following class of heat equations involving the 1-Laplacian operator for the Dirichlet problem {ut−Δ1u=f(u)inΩ×(0,+∞),u=0in∂Ω×(0,+∞),u(x,0)=u0(x)inΩ, where Ω⊂RN is a smooth bounded domain, N≥1, f:R→R is a continuous function satisfying some technical conditions and [Formula presented] denotes the 1-Laplacian operator. The existence of global solutions is done by using an approximation technique that consists in working with a class of p-Laplacian problems associated with (P) and then taking the limit when p→1+ to get our results |
URI/URL: | https://www.sciencedirect.com/science/article/pii/S0022247X22005236 https://doi.org/10.1016/j.jmaa.2022.126509 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10092 |
ISSN: | 0022-247X |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|