DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10092

Titre: Existence of solution for a class of heat equation involving the 1-Laplacian operator
Auteur(s): Alves, Claudianor O.
Boudjeriou, Tahir
Mots-clés: Degenerate parabolic equations
Galerkin methods
Nonlinear parabolic equations
Date de publication: 2022
Editeur: Elsevier
Collection/Numéro: Journal of Mathematical Analysis and Applications/ Vol.516, N°2 (2022);pp. 1-26
Résumé: This paper concerns the existence of global solutions for the following class of heat equations involving the 1-Laplacian operator for the Dirichlet problem {ut−Δ1u=f(u)inΩ×(0,+∞),u=0in∂Ω×(0,+∞),u(x,0)=u0(x)inΩ, where Ω⊂RN is a smooth bounded domain, N≥1, f:R→R is a continuous function satisfying some technical conditions and [Formula presented] denotes the 1-Laplacian operator. The existence of global solutions is done by using an approximation technique that consists in working with a class of p-Laplacian problems associated with (P) and then taking the limit when p→1+ to get our results
URI/URL: https://www.sciencedirect.com/science/article/pii/S0022247X22005236
https://doi.org/10.1016/j.jmaa.2022.126509
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10092
ISSN: 0022-247X
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
TahirBoudjeriou.pdf491,04 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires