DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10352

Titre: Prediction of resisting force and tensile load reduction in GFRP composite materials using Artificial Neural Network-Enhanced Jaya Algorithm
Auteur(s): Fahem, Noureddine
Belaidi, Idir
Oulad Brahim, Abdelmoumin
Noori, Mohammad
Khatir, Samir
Magd, Abdel Wahab
Mots-clés: ANN-E JAYA
ANN-JAYA
ANN-PSO
Experimental test
FEM
GFRP
Date de publication: 2023
Editeur: Elsevier
Collection/Numéro: Composite Structures/ Vol.304 (2023);pp. 1-14
Résumé: This work presents an experimental and a numerical studies on the effect of the phenomenon of porosity on the mechanical properties of Glass Fiber Reinforced Polymer (GFRP). In a first part, material elaboration, as well as its characterization using a three-point bending test to extract the basic mechanical properties of the material, is considered. In a second part, a finite element model is created to simulate the problem of air bubbles broadly. Several cases of different shapes and sizes are simulated. The results show a significant effect on the reduction of load in both tensile and bending cases as the size of the bubbles increases. Furthermore, the second part includes the application of the Artificial Neural Network-Enhanced Jaya Algorithm (ANN-E JAYA) to predict the reduction of the tensile load as a function of different crack lengths obtained from an Extended Finite Element Method (XFEM) model. Next, to verify the accuracy of provided application, a comparison is made with two other applications such as Artificial Neural Network-Jaya Algorithm (ANN-JAYA) and Artificial Neural Network-Particle Swarm Optimization (ANN-PSO). The results of the three algorithms show good convergence, with a slight increase in accuracy for ANN-E JAYA. MATLAB code and data used in this article can be found at https://github.com/Samir-Khatir/GFRP-ANN-E-JAYA.git
URI/URL: https://biblio.ugent.be/publication/8772253
https://doi.org/10.1016/j.compstruct.2022.116326
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10352
ISSN: 02638223
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires