DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Telecommunication >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10659

Titre: Hidden biometrics for identification using ECG and EEG signals
Auteur(s): Adjerid, Chaouki
Boukerma, Billal
Cherifi, .Dalila (supervisor)
Mots-clés: Hidden Biometrics
EEG signals
Date de publication: 2016
Résumé: Security concerns increase as the technology for falsification advances and biometrics provides airtight security by identifying an individual based on the physiological and/or behavioral characteristics. Physiological hidden biometrics represented by ECG and EEG biomedical signals are highly confidential, sensitive, and hard to steal and replicate, and also hold great promise to provide a more secure biometric approach for user identification and authentication. This work proposes the human heartbeat as a characteristic to be used for identity recognition. An ECG-based biometric identification system is developed, a method based on autocorrelation (AC) in conjunction with the discrete cosine transform (DCT) proposed for feature extractions from the pre-processed ECG signal. Also studied is the scenario where the proposed system deals with intruder signals in our database. For this goal, a study is performed to adjust the parameters allowing the system to avoid detection failure of false identification and false rejection scenarios. In addition, human brain activities represented by EEG are studied for biometric system purposes. In this study, an EEG-based biometric system is represented by performing a pre- processing stage on the EEG signals, with the features extractions completed using a wavelet packet decomposition and a classification.
Description: 56p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/10659
Collection(s) :Telecommunication

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Hidden Biometrics for identification using ECG and EEG Signals.pdf2,68 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires