Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11263
|
Titre: | Arabic speech recognition using deep learning and common voice dataset |
Auteur(s): | Oukas, Nourredine Zerrouki, Taha Haboussi, Samia Djettou, Halima |
Mots-clés: | Arabic language Automatic Speech recognition Deep learning Mozilla Common Voice |
Date de publication: | 2022 |
Editeur: | IEEE |
Collection/Numéro: | 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2022;pp. 642-647 |
Résumé: | Speech recognition is critical in creating a natural voice interface for human-to-human communication with modern digital life equipment. Smart homes, vehicles, autonomous devices in the Internet of Things, and others need to recognize various spoken languages. Meanwhile, the Arabic language has a shortage of speech recognition systems. This study comes to develop an Arabic speech-to-text tool for Arabic language. Our solution uses DeepSpeech model which is a deep learning approach and uses a data set from the Common Voice Mozilla project. The results showed a 24.3 percent Word Error Rate and a 17.6 percent character error rate. So, the proposed model reduces the Word Error Rate by 11.7% compared to Bakheet's Wav2Vec model |
URI/URL: | https://ieeexplore.ieee.org/document/9990834 DOI: 10.1109/3ICT56508.2022.9990834 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11263 |
ISBN: | 978-166545193-2 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|