DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11263

Titre: Arabic speech recognition using deep learning and common voice dataset
Auteur(s): Oukas, Nourredine
Zerrouki, Taha
Haboussi, Samia
Djettou, Halima
Mots-clés: Arabic language
Automatic Speech recognition
Deep learning
Mozilla Common Voice
Date de publication: 2022
Editeur: IEEE
Collection/Numéro: 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2022;pp. 642-647
Résumé: Speech recognition is critical in creating a natural voice interface for human-to-human communication with modern digital life equipment. Smart homes, vehicles, autonomous devices in the Internet of Things, and others need to recognize various spoken languages. Meanwhile, the Arabic language has a shortage of speech recognition systems. This study comes to develop an Arabic speech-to-text tool for Arabic language. Our solution uses DeepSpeech model which is a deep learning approach and uses a data set from the Common Voice Mozilla project. The results showed a 24.3 percent Word Error Rate and a 17.6 percent character error rate. So, the proposed model reduces the Word Error Rate by 11.7% compared to Bakheet's Wav2Vec model
URI/URL: https://ieeexplore.ieee.org/document/9990834
DOI: 10.1109/3ICT56508.2022.9990834
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11263
ISBN: 978-166545193-2
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires