DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11265

Titre: Mesh router nodes placement for wireless mesh networks based on an enhanced Moth–Flame optimization algorithm
Auteur(s): Mekhmoukh Taleb, Sylia
Meraihi, Yassine
Mirjalili, Seyedali
Acheli, Dalila
Ramdane-Cherif, Amar
Benmessaoud Gabis, Asma
Mots-clés: Mesh router nodes placement
Moth flame optimization algorithm
Network design
Wireless mesh network
Date de publication: 2023
Editeur: Springer
Collection/Numéro: Mobile Networks and Applications/ (2023);pp. 1-24
Résumé: This paper proposes an enhanced version of Moth Flame Optimization (MFO) algorithm, called Enhanced Chaotic Lévy Opposition-based MFO (ECLO-MFO) for solving the mesh router nodes placement problem in wireless mesh network (WMN-MRNP). The proposed ECLO-MFO incorporates three strategies including the chaotic map concept, the Lévy flight strategy, and the Opposition-Based Learning (OBL) technique to enhance the optimization performance of MFO. Firstly, chaotic maps are used to increase the chaotic stochastic behavior of the MFO algorithm. Lévy flight distribution is adopted to increase the population diversity of MFO. Finally, OBL is introduced to improve the convergence speed of MFO and to explore the search space effectively. The effectiveness of the proposed ECLO-MFO is tested based on various scenarios under different settings, considering network connectivity and client coverage metrics. The results of simulation obtained using MATLAB 2020a demonstrate the accuracy and superiority of ECLO-MFO in determining the optimal positions of mesh routers when compared with the original MFO and ten other optimization algorithms such as Genetic Algorithm (GA), Simulated Annealing (SA), Harmony Search (HS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo Search Algorithm (CS), Bat Algorithm (BA), Firefly optimization (FA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA)
URI/URL: https://link.springer.com/article/10.1007/s11036-022-02059-6
DOI 10.1007/s11036-022-02059-6
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11265
ISSN: 1383469X
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires