Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11270
|
Titre: | Notch depth identification in CFRP composite beams based on modal analysis using artificial neural network |
Auteur(s): | Zara, A. Belaidi, I. Oulad Brahim, A. Khatir, S. Capozucca, R. Abdel Wahab, M. |
Mots-clés: | Artificial neural networks (ANN) Carbon fiber reinforced polymer (CFRP) FEM Notch depth identification |
Date de publication: | 2023 |
Editeur: | Springer |
Collection/Numéro: | Lecture Notes in Mechanical Engineering (2023);pp. 101-112 |
Résumé: | Recently, the development of optimization techniques based on artificial neural network (ANN) has shown considerable progress in the field of damage identification in composite structures, due to their simplicity, greater precision, and lower computational time compared to non-destructive testing methods (NDT). In our work, a finite element model is developed using ABAQUS software to validate the vibratory behaviors of experimental tests. Then, based on digital data extracted from a calibrated model of the damaged CFRP cantilever specimens, we used a novel artificial neural network approach to detect and identify notch depth in carbon fiber reinforced polymer (CFRP) beam based on modal analysis. The results show that ANN based on natural frequencies can be used to identify notch depth with good accuracy in composite structures |
URI/URL: | DOI 10.1007/978-981-19-4835-0_7 https://link.springer.com/chapter/10.1007/978-981-19-4835-0_7 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11270 |
ISBN: | 978-981194834-3 |
ISSN: | 21954356 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|