DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11270

Titre: Notch depth identification in CFRP composite beams based on modal analysis using artificial neural network
Auteur(s): Zara, A.
Belaidi, I.
Oulad Brahim, A.
Khatir, S.
Capozucca, R.
Abdel Wahab, M.
Mots-clés: Artificial neural networks (ANN)
Carbon fiber reinforced polymer (CFRP)
FEM
Notch depth identification
Date de publication: 2023
Editeur: Springer
Collection/Numéro: Lecture Notes in Mechanical Engineering (2023);pp. 101-112
Résumé: Recently, the development of optimization techniques based on artificial neural network (ANN) has shown considerable progress in the field of damage identification in composite structures, due to their simplicity, greater precision, and lower computational time compared to non-destructive testing methods (NDT). In our work, a finite element model is developed using ABAQUS software to validate the vibratory behaviors of experimental tests. Then, based on digital data extracted from a calibrated model of the damaged CFRP cantilever specimens, we used a novel artificial neural network approach to detect and identify notch depth in carbon fiber reinforced polymer (CFRP) beam based on modal analysis. The results show that ANN based on natural frequencies can be used to identify notch depth with good accuracy in composite structures
URI/URL: DOI 10.1007/978-981-19-4835-0_7
https://link.springer.com/chapter/10.1007/978-981-19-4835-0_7
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11270
ISBN: 978-981194834-3
ISSN: 21954356
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires