DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Faculté de Technologie >
Génie Mécanique >
Mécatronique >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11284

Titre: Automatic condition monitoring of grid-connected PV system using signal processing techniques and machine learning algorithms
Auteur(s): Bentaalla, Abderrahmane
Rahmoune, Chamseddine(Promoteur)
Mots-clés: Optimization
Maintenance
Solar energy
Artificial Intelligence
Automatic condition monitoring
Signal processing techniques
Algorithms
Date de publication: 2022
Editeur: Université M’Hamed Bougara Boumerdes : Faculté de Technologie
Résumé: In electrical energy production field, the early detection of Grid-connected PV system faults is crucial to avoid any failure in the system camponants, which can lead to unexpected breakdowns that causes high repair costs and enormous economic and commercial losses. During PPT modes operation the system faults remain undetectable for longer periods introducing many threats to the system. This work presents an approach for faults detection in (GPV) system under Maximum Power Point Tracking (MPPT) mode during large variations of environment conditions. We propose an intelligent method based on signal processing techniques and Machine Learning algorithms to detect and diagnose the systems faults using the extensive measurements obtained from a GPV system under Maximum PPT (MPPT). The recorded scenarios include seven faults: open circuit in PV array, grid anomaly, inverter fault, feedback sensor, MPPT controller and boost converter faults
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11284
Collection(s) :Mécatronique

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Bentaalla, Abderrahmane.pdf5,43 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires