DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11394

Titre: Wind power converter fault diagnosis using reduced kernel PCA-Based BiLSTM
Auteur(s): Attouri, Khadija
Mansouri, Majdi
Hajji, Mansour
Kouadri, Abdelmalek
Bouzrara, Kais
Nounou, Hazem
Mots-clés: Wind energy converter (WEC) systems
Fault detection and diagnosis (FDD)
Dataset reduction
Kernel principal component analysis (KPCA)
Bidirectional long-short-term memory (BiLSTM)
Date de publication: 2023
Editeur: MDPI
Collection/Numéro: Sustainability/ Vol.15, N°4 (2023);pp. 1-19
Résumé: In this paper, we present a novel and effective fault detection and diagnosis (FDD) method for a wind energy converter (WEC) system with a nominal power of 15 KW, which is designed to significantly reduce the complexity and computation time and possibly increase the accuracy of fault diagnosis. This strategy involves three significant steps: first, a size reduction procedure is applied to the training dataset, which uses hierarchical K-means clustering and Euclidean distance schemes; second, both significantly reduced training datasets are utilized by the KPCA technique to extract and select the most sensitive and significant features; and finally, in order to distinguish between the diverse WEC system operating modes, the selected features are used to train a bidirectional long-short-term memory classifier (BiLSTM). In this study, various fault scenarios (short-circuit (SC) faults and open-circuit (OC) faults) were injected, and each scenario comprised different cases (simple, multiple, and mixed faults) on different sides and locations (generator-side converter and grid-side converter) to ensure a comprehensive and global evaluation. The obtained results show that the proposed strategy for FDD via both applied dataset size reduction methods not only improves the accuracy but also provides an efficient reduction in computation time and storage space
URI/URL: https://doi.org/10.3390/su15043191
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11394
ISSN: https://www.mdpi.com/2071-1050/15/4/3191
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Abdelmalek Kouadri.pdf697,71 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires