DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11457

Titre: Rolling bearing fault feature selection based on standard deviation and random forest classifier using vibration signals
Auteur(s): Moussaoui, Imane
Rahmoune, Chemseddine
Benazzouz, Djamel
Mots-clés: Feature selection
Standard deviation
Random forest
Optimization algorithm
Bearing fault
Diagnosis
Date de publication: 2023
Editeur: SAGE
Collection/Numéro: Advances in Mechanical Engineering/ Vol.15, N°4 (2023);pp. 1-11
Résumé: The precise identification of faults is vital for ensuring the reliability of the bearing’s performance, and thus, the functionality of rotary machinery. The focus of our study is on the role that feature selection plays in improving the accuracy of predictive models used for diagnosis. The study combined the Standard Deviation (STD) parameter with the Random Forest (RF) classifier to select relevant features from vibration signals obtained from bearings operating under various conditions. We utilized three databases with different bearings’ health states operating under distinct conditions. The results of the study were promising, indicating that the proposed method was not only effective but also consistent, even under time-varying conditions
URI/URL: https://doi.org/10.1177/16878132231168503
https://journals.sagepub.com/doi/full/10.1177/16878132231168503
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11457
ISSN: 1687-8132
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Moussaoui Imane.pdf2,19 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires