DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11505

Titre: GAN data augmentation for improved automated atherosclerosis screening from coronary CT angiography
Auteur(s): Laidi, Amel
Ammar, Mohammed
El Habib Daho, Mostafa
Mahmoudi, Said
Mots-clés: Atherosclerosis
CCTA
Transfer learning
Generative Adversarial Networks
GAN
Data augmentation
Date de publication: 2023
Collection/Numéro: EAI Endorsed Transactions on Scalable Information Systems Vol.10, N°1 (2023);pp. 1-8
Résumé: Atherosclerosis is a chronic medical condition that can result in coronary artery disease,strokes, or even heart attacks. early detection can result in timely interventions and save lives.OBJECTIVES: In this work, a fully automatic transfer learning-based model was proposed for Atherosclerosisdetection in coronary CT angiography (CCTA). The model’s performance was improved by generating trainingdata using a Generative Adversarial Network.METHODS: A first experiment was established on the original dataset with a Resnet network, reaching 95.2%accuracy, 60.8% sensitivity, 99.25% specificity and 90.48% PPV. A Generative Adversarial Network (GAN) wasthen used to generate a new set of images to balance the dataset, creating more positive images. Experimentswere made adding from 100 to 1000 images to the dataset.RESULTS: adding 1000 images resulted in a small drop in accuracy to 93.2%, but an improvement in overallperformance with 89.0% sensitivity, 97.37% specificity and 97.13% PPV.CONCLUSION: This paper was one of the early research projects investigating the efficiency of dataaugmentation using GANs for atherosclerosis, with results comparable to the state of the art
URI/URL: DOI: https://doi.org/10.4108/eai.17-5-2022.173981
https://publications.eai.eu/index.php/sis/article/view/1027
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11505
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Amel Laidi.pdf8,45 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires