DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11929

Titre: EMG-based Hand Gesture Classification Using Deep Learning
Auteur(s): Halzoun, Maya
Boutellaa, Elhocine (Supervisor)
Mots-clés: Deep Learning methods
Convolutional Neural Network.
Date de publication: 2022
Résumé: In recent years, Deep Learning methods have been successfully applied to a wide range of image and speech recognition problems highly impacting other research fields. As a result, new works in biomedical engineering are directed towards the application of these methods to electromyography-based gesture recognition. In this report, we present a brief overview of Deep Learning methods for electromyography-based hand gesture recognition along with a comparison between different deep learning architectures. We used four architectures that are: CNN, RNN, LSTM and hybrid CNN-LSTM. The proposed networks yield to various levels of accuracy depending on the used model, including that our best model was the CNN model which resulted in the highest accuracy. The proposed analysis helps in understanding the limitations of the model and exploring new ways to improve the performance.
Description: 57p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/11929
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
FYP Report HALZOUN Maya.pdf3,64 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires