|
Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12599
|
Titre: | Retina blood vessels segmentation by combining deep learning networks |
Auteur(s): | Bachiri, Mohamed Elssaleh Rahmoune, Adel Rahmoune, Fayçal |
Mots-clés: | Retinal segmentation Convolution neuron network U-Net Deep learning VGG 16 Resnet 34 |
Date de publication: | 2023 |
Editeur: | Inder science |
Collection/Numéro: | International Journal of Biomedical Engineering and Technology, Vol. 43, N° 1 (2023);p.p. 38-59 |
Résumé: | In this paper, we propose two deep learning architectures for the segmentation and detection of the vascular networks of blood vessels in fundus images. First, we combined VGG16 with U-net, then, we used Resnet 34 in combination with U-net. Both architectures employ an encoding and a decoding path. In this paper, we used the DRIVE and STARE databases. After applying VGG 16+U-net on the DRIVE database, we obtained the accuracy value of 0.96955, 0.79929 sensitivity, 0.98624 specificity, 0.9805 recall, and 0.9833 F1-score. We applied VGG 16+U-net on STARE database and we got 0.95259 accuracy, 0.89996 sensitivity, 0.95530 specificity, 0.9933 recall, and 0.9742 F1-score. Concerning Resnet 34 + U-net, we got the value of 0.9692 accuracy, 0.7859 sensitivity, 0.9870 specificity, 0.9794 recall, and 0.9832 F1-score after applying on DRIVE database. Moreover, we got 0.9363 accuracy, 0.9335 sensitivity, 0.9246 specificity, 0.9961 recall, and 0.9649 F1-score after we applied Resnet 34+U-net on STARE. |
URI/URL: | https://doi.org/10.1504/IJBET.2023.133720 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12599 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|