DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12604

Titre: A comparative study between convolutional and multilayer perceptron neural networks classification models
Auteur(s): Bachiri, Mohamed Elssaleh
Harrar, Khaled
Mots-clés: Image classification
CNN
MLP
Convolution
Hyper parameters
Date de publication: 2019
Résumé: Image classification plays an important role in image processing, computer vision, and machine learning. This paper deals with image classification using deep learning. For this, a conventional neural network (CNN) and multilayer perceptron neural network (MLP) models were used for the classification. The two models were implemented on the MNIST dataset which was used at 100% and half of capacity, The models were trained with fixed and flexible number of epochs in two runs. CNN provided an accuracy of 98,43% with a loss of 4,44%, where MLP reached 92,80% of classification with a loss of 25,87%. Indeed, for each model, variables as number of filters, size, and activation functions were discussed. The CNN demonstrated a good performance providing high accuracy for image and also proved to be a better candidate for data applications.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12604
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Bachiri_ICNTBA_2019.pdf840,19 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires