Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12604
|
Titre: | A comparative study between convolutional and multilayer perceptron neural networks classification models |
Auteur(s): | Bachiri, Mohamed Elssaleh Harrar, Khaled |
Mots-clés: | Image classification CNN MLP Convolution Hyper parameters |
Date de publication: | 2019 |
Résumé: | Image classification plays an important role in image processing, computer vision, and machine learning. This paper deals with image classification using deep learning. For this, a conventional neural network (CNN) and multilayer perceptron neural network (MLP) models were used for the classification. The two models were implemented on the MNIST dataset which was used at 100% and half of capacity, The models were trained with fixed and flexible number of epochs in two runs. CNN provided an accuracy of 98,43% with a loss of 4,44%, where MLP reached 92,80% of classification with a loss of 25,87%. Indeed, for each model, variables as number of filters, size, and activation functions were discussed. The CNN demonstrated a good performance providing high accuracy for image and also proved to be a better candidate for data applications. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12604 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|