DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12693

Titre: EMG signals classification for neuromuscular diseases detectionusing deep learning
Auteur(s): Loubar, Lidia
Toubal, Maria
Boutellaa, Elhocine (Supervisor)
Mots-clés: Deep learning
Electromyographs (EMG)
Date de publication: 2023
Editeur: Université M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique
Résumé: Neuromuscular diseases are particular impairments that affect the muscle tissue or nervous system part connected to muscles. Electromyography (EMG) signals are valuable biosignals for the diagnosis of neuromuscular diseases. However, the classification of EMG signals is a challenging task due to the complexity of the signals and the variability of the diseases. In this project, we address the problem of EMG signals classification for the detection of neuromuscular diseases using deep learning techniques. The main goal of our project is to develop a robust deep-learning model that performs well on unseen data, thereby improving the reliability of diagnosis in real-life scenarios. To achieve this, we design a model which we train and evaluate on a dataset of EMG signals from patients with different neuromuscular diseases. We assess the performance of our designed model using two different methods : the train-test split approach, commonly employed in the existing literature, and the subject-independent evaluation method, which ensures that the model is tested on completely unseen data. The results show that the model achieves excellent performance on the train-test split approach. However, the second method produces varied and uneven scores for different patients, suggesting that EMG data of certain individuals may be more challenging to classify accurately. Nonetheless, some patients exhibit highly accurate classifications, demonstrating the potential performance of our designed model. The obtained results indicate the potential of the developed tool for the diagnosis of neuromuscular diseases.
Description: 73p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12693
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
EMG Signals Classification for Neuromuscular Diseases Detection Using Deep Learning Corrected.pdf2,44 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires