Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12765
|
Titre: | Improved fault detection based on kernel PCA for monitoring industrial applications |
Auteur(s): | Attouri, Khadija Mansouri, Majdi Hajji, Mansour Kouadri, Abdelmalek Bensmail, Abderrazak Bouzrara, Kais Nounou, Hazem |
Mots-clés: | Cement plant Fault detection (FD) Random sampling (RnS) Reduced kernel principal component analysis (RKPCA) Spectral clustering (SpC) Tennessee eastman process (TEP) |
Date de publication: | 2024 |
Editeur: | Elsevier |
Collection/Numéro: | Journal of process control/ Vol. 133, Article N° 103143(Jan. 2024) |
Résumé: | The conventional Kernel Principal Component Analysis (KPCA) -based fault detection technique requires more computation time and memory storage space to analyze large-sized datasets. In this context, two techniques, Spectral Clustering (SpC) and Random Sampling (RnS), are developed to reduce the dataset size by retaining the more relevant observations while preserving the main statistical characteristics of the original dataset. These two techniques and others use the training dataset from two different industrial processes, Tennessee Eastman (TEP) and Cement Plant (CP) to be reduced and provided to build the Reduced KPCA (RKPCA) model-based fault detection scheme. The obtained results show the effectiveness of the proposed techniques in terms of some fault detection performance indices and computation costs. |
URI/URL: | https://doi.org/10.1016/j.jprocont.2023.103143 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12765 |
ISSN: | 09591524 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|