DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12765

Titre: Improved fault detection based on kernel PCA for monitoring industrial applications
Auteur(s): Attouri, Khadija
Mansouri, Majdi
Hajji, Mansour
Kouadri, Abdelmalek
Bensmail, Abderrazak
Bouzrara, Kais
Nounou, Hazem
Mots-clés: Cement plant
Fault detection (FD)
Random sampling (RnS)
Reduced kernel principal component analysis (RKPCA)
Spectral clustering (SpC)
Tennessee eastman process (TEP)
Date de publication: 2024
Editeur: Elsevier
Collection/Numéro: Journal of process control/ Vol. 133, Article N° 103143(Jan. 2024)
Résumé: The conventional Kernel Principal Component Analysis (KPCA) -based fault detection technique requires more computation time and memory storage space to analyze large-sized datasets. In this context, two techniques, Spectral Clustering (SpC) and Random Sampling (RnS), are developed to reduce the dataset size by retaining the more relevant observations while preserving the main statistical characteristics of the original dataset. These two techniques and others use the training dataset from two different industrial processes, Tennessee Eastman (TEP) and Cement Plant (CP) to be reduced and provided to build the Reduced KPCA (RKPCA) model-based fault detection scheme. The obtained results show the effectiveness of the proposed techniques in terms of some fault detection performance indices and computation costs.
URI/URL: https://doi.org/10.1016/j.jprocont.2023.103143
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12765
ISSN: 09591524
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Improved fault detection based on kernel PCA for monitoring industrial applications.pdf1,73 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires