Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12777
|
Titre: | A Wall Effects and Means of Controlling the Evolution of Swirling Flows with Vortex Breakdown |
Auteur(s): | Meziane, Akila Hachemi, M. Kessal, M. Imoula, M. |
Mots-clés: | Vortex breakdown Spherical gap spaces Means of control Rotating disks Kinematical control Boundary effects |
Date de publication: | 2023 |
Editeur: | JAFM |
Collection/Numéro: | Journal of Applied Fluid Mechanics/ Vol. 16, N° 11(2023);pp. 2277-2289 |
Résumé: | This paper investigates numerically the bubble-type vortex breakdown
apparition in the case of closed rotating flows of a viscous, axisymmetric, and
incompressible fluid. First, a truncated conical/cylindrical cavity of spherical
end disks is used to simulate and analyze the vortex structure under rigid surface
conditions. The geometric effects of the enclosure are also studied. Vortex
breakdown is demonstrated beyond the lower disk rotation rate threshold by
introducing the no-slip condition imposed on the upper wall. The objective is to
explore ways of controlling the evolution of this physical event by modifying
the confinement conditions upstream of the vortex rupture. Particular attention is
also paid to the effective kinematic viscosity, thermal diffusivity and geometric
control of recirculation zones on the axis of rotation (axial bubble type). The
second geometry consists of a spherical annulus formed by two concentric
hemispheres in differential rotation under plat-free surface conditions. The
results show that rotation of the inner hemisphere induces a vortex bubble on the
polar axis. In contrast, the outer hemisphere rotation induces a toroidal vortex on
the equator |
URI/URL: | https://doi.org/10.47176/jafm.16.11.1767 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12777 |
ISSN: | 1735-3572 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|