Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12891
|
Titre: | Diabetic retinopathy grading using deep neural networks |
Auteur(s): | Temmam, Amira Ahmed Gaid, Chaima Daamouche, Abdelhamid (Supervisor) |
Mots-clés: | Deep learning Diabetic retinopathy grading |
Date de publication: | 2023 |
Editeur: | Université M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique |
Résumé: | Diabetic Retinopathy (DR) is a chronic disease and the leading cause of blindness and
visual impairment among diabetic patients making early detection and classificatio nof
DR crucial for effectiv etreatment .Thi sprojec tutilize sstate-of-the-ar tconvolutiona lneu-
ral networks and transfer learning techniques to analyze retinal images and classify the
severity of the disease on a scale of 0 to 4 (ranging from healthy to proliferative). We
employ architectures such as EfficientNetB 1,InceptionV 3,Xceptio n,a ndMobileNet V2to
achieve accurate classification .Throug h aserie so fexperiment san devaluations ,ou rsys-
tem achieves an overall accuracy of 80.0% in classifying DR images. The results showcase
the significan tpotentia lo fdee plearnin gi nassistin ghealthcar eprofessional swit hearly
diagnosis and treatment planning, thereby improving patient well-being. |
Description: | 82p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/12891 |
Collection(s) : | Computer
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|