Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Telecommunication >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13273
|
Titre: | Classification of ECG Signals Using Deep Learning |
Auteur(s): | Zanaz, Serine Kermane, Imane Daamouche, Abdelhamid (Supervisor) |
Mots-clés: | ECG Signals Using |
Date de publication: | 2023 |
Editeur: | Université M’Hamed bougara : Institute de Ginie électric et électronic |
Résumé: | Accurate classifi cation of electrocardiogram (ECG) signals is crucial for diagnosing cardiac conditions. In this project, our objective was to classify ECG beats into disease classes using deep learning techniques. We leveraged two primary datasets: the MIT-BIH dataset from PhysioNet and the INCART 12-lead Arrhythmia Database from St. Petersburg, providing a comprehensive basis for our classifi cation models. Our methodology involved a hybrid model combining 1D and 2D convolutional neural
networks (CNNs). We applied a 1D CNN architecture to process ECG signals directly
and transformed ECG beats into images for a 2D CNN architecture. By incorporating
both approaches, we captured temporal and spatial information in the ECG signals. Data
augmentation techniques were employed to address imbalanced data distribution and
improve model performance. |
Description: | 99 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13273 |
Collection(s) : | Telecommunication
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|