DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Telecommunication >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13273

Titre: Classification of ECG Signals Using Deep Learning
Auteur(s): Zanaz, Serine
Kermane, Imane
Daamouche, Abdelhamid (Supervisor)
Mots-clés: ECG Signals Using
Date de publication: 2023
Editeur: Université M’Hamed bougara : Institute de Ginie électric et électronic
Résumé: Accurate classifi cation of electrocardiogram (ECG) signals is crucial for diagnosing cardiac conditions. In this project, our objective was to classify ECG beats into disease classes using deep learning techniques. We leveraged two primary datasets: the MIT-BIH dataset from PhysioNet and the INCART 12-lead Arrhythmia Database from St. Petersburg, providing a comprehensive basis for our classifi cation models. Our methodology involved a hybrid model combining 1D and 2D convolutional neural networks (CNNs). We applied a 1D CNN architecture to process ECG signals directly and transformed ECG beats into images for a 2D CNN architecture. By incorporating both approaches, we captured temporal and spatial information in the ECG signals. Data augmentation techniques were employed to address imbalanced data distribution and improve model performance.
Description: 99 p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13273
Collection(s) :Telecommunication

Fichier(s) constituant ce document :

Fichier Description TailleFormat
finale version_merged (2).pdf178,71 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires