DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13386

Titre: Bearing faults classification using a new approach of signal processing combined with machine learning algorithms
Auteur(s): Gougam, Fawzi
Afia, Adel
Soualhi, Abdenour
Touzout, Walid
Rahmoune, Chemseddine
Benazzouz, Djamel
Mots-clés: Fault diagnosis
Health monitoring
Machine learning
Signal processing
Vibration signal
Date de publication: 2024
Editeur: Springer Nature
Collection/Numéro: Journal of the Brazilian Society of Mechanical Sciences and Engineering/ Vol. 46, N° 2, Art. 65(2024);pp. 1-18
Résumé: Vibration analysis plays a crucial role in fault and abnormality diagnosis in various mechanical systems. However, efficient vibration signal processing is required for valuable diagnosis and hidden patterns’ detection and identification. Hence, the present paper explores the application of a robust signal processing method called maximal overlap discrete wavelet packet transform (MODWPT) that supports multiresolution analysis, allowing for the examination of signal details at different scales. This capability is valuable for identifying faults that may manifest at different frequency ranges. MODWPT is combined with covariance and eigenvalues to signal reconstruction. After that, health indicators are specifically applied on the reconstructed vibration signal for feature extraction. The proposed approach was carried out on an experimental test rig where the obtained results demonstrate its effectiveness through confusion matrix analysis of machine learning tools. The ensemble tree model gives more accurate results (accuracy and stability) of bearing faults classification and efficiently identify potential failures and anomalies in mechanical equipment.
URI/URL: https://doi.org/10.1007/s40430-023-04645-5
https://link.springer.com/article/10.1007/s40430-023-04645-5
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13386
ISSN: 1678-5878
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Bearing faults classification using a new approach of signal processing combined with machine learning algorithms.pdf2,9 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires