DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13389

Titre: Non-relativistic treatment of q-deformed modified Pöschel Teller potential via path integral approach
Auteur(s): Ghobrini, Amina
Boukabcha, Hocine
Ami, Ismahane
Mots-clés: Bound states
Energy spectrum
Feynman propagator
Radial propagator
Space-time transformation
Wavefuctions
The q-deformed modified Pöschl-Teller potential
Date de publication: 2024
Editeur: Springer
Collection/Numéro: Indian Journal of Physics/ Vol. 98, N° 2( Feb.2024);pp. 433 - 444
Résumé: This study aims to evaluate the D-dimension Feynman propagator to find the spectrum of non-relativistic energies and the corresponding wavefunctions of the ′ ′ℓ′ ′ states for the q-deformed modified Pöschl-Teller potential. We propose an approximation scheme for the centrifugal term of our potential. In addition, an appropriate space-time of Duru-Kleinert transformation has also been performed to convert the radial path integral into a manageable one. Furthermore, two special cases are to be considered, the Pöschl-Teller type potential and the generalized hyperbolic potential, as well as by a combination of illustration and comparison of some diatomic molecules, namely (HCL, NiC, CO, and I2). It is found that this study is substantially marked, which communicated many important methods for solving the Schrödinger’s equation.
URI/URL: https://doi.org/10.1007/s12648-023-02850-5
https://link.springer.com/article/10.1007/s12648-023-02850-5
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13389
ISSN: 0973-1458
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Non-relativistic treatment of q-deformed modified Pöschel Teller potential via path integral approach.pdf323,82 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires