DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13646

Titre: An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization
Auteur(s): Mammeri, Elhachemi
Ahriche, Aimad
Necaibia, Ammar
Bouraiou, Ahmed
Mekhilef, Saad
Dabou, Rachid
Ziane, Abderrezzaq
Mots-clés: Battery modeling
Hybrid algorithms
Meta-heuristic algorithms
Parameter identification
Photovoltaic energy
Date de publication: 2023
Editeur: Springer Nature
Collection/Numéro: Electrical Engineering/ Vol. 105, N° 6(Dec. 2023);PP. 4525 - 4548
Résumé: Batteries are widely used for energy storage in stand-alone PV systems. However, both PV modules and batteries exhibit nonlinear behavior. Therefore, battery modeling is an essential step toward appropriate battery control and overall PV system management. Empirical models remain reliable for lead-acid batteries, especially the Copetti model, which describes many inner and outer battery phenomena, including temperature dependency. However, the parameters of the Copetti model require further adjustment to increase its ability to accurately represent battery behavior. Recently, metaheuristic algorithms have been employed for parameter identification, especially hybrid algorithms that combine the advantages of two or more algorithms. This paper proposes an enhanced battery model based on the Copetti model. The parameter identification of the enhanced model has been carried out using a novel hybrid PSO-GA algorithm (HPGA). The hybrid algorithm combines GA and PSO in a cascade configuration, with GA as the master algorithm. The HPGA algorithm has been compared with other algorithms, namely GA, PSO, ABC, COA, and a hybrid GWO-COA, to reveal its advantages and disadvantages. The NRMSE is used to evaluate algorithms in terms of tracking speed and efficiency. HPGA shows an improvement in tracking efficiency compared to GA and PSO. The proposed model is validated on several charging-discharging data and exhibits a 15% lower mean error compared to the Copetti model with original parameters. Additionally, the proposed model demonstrates a lower mean error of 0.16% compared to other models in the literature with a 0.36% mean error at least.
URI/URL: https://link.springer.com/article/10.1007/s00202-023-01996-z
https://doi.org/10.1007/s00202-023-01996-z
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13646
ISSN: 0948-7921
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
An enhanced battery model using a hybrid genetic algorithm.pdf3,55 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires