Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13651
|
Titre: | Turbofan Engine RUL Prediction using ICA and Machine Learning Algorithms |
Auteur(s): | Aribi, Yacine Boutora, Saliha Boushaki Zamoum, Pr. Razika Menasria, Hafid Abdellaoui, Abdelkader Kouzou, Pr. Abdellah |
Mots-clés: | Gradient Boosted Machine Independent Component Analysis (ICA) Random Forest Remaining Useful Life (RUL) Turbo Fan Engine |
Date de publication: | 2023 |
Editeur: | Institute of Electrical and Electronics Engineers Inc |
Collection/Numéro: | 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 2023;pp. 477-484 |
Résumé: | This paper takes an approach to the determination on the Remaining Useful Life (RUL) on a real-life turbo engine model selected from a set of data provided within the public domain for research purposes from the Prognostics Data Repository of NASA. The RUL analysis algorithm uses Independent Component Analysis for data dimensionality reduction and data processing simplicity due to the large number of involved sensors, then a model is trained to predict the remaining useful life for the turbo engine using Random Forest (RF) and Gradient Boosted Machine Algorithms (GBMA). The final RUL data is compared to the real RUL vs. time provided within the original data date for algorithm validation. |
URI/URL: | 10.1109/SSD58187.2023.10411295 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13651 https://ieeexplore.ieee.org/document/10411295 |
ISBN: | 979-835033256-8 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|