DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13651

Titre: Turbofan Engine RUL Prediction using ICA and Machine Learning Algorithms
Auteur(s): Aribi, Yacine
Boutora, Saliha
Boushaki Zamoum, Pr. Razika
Menasria, Hafid
Abdellaoui, Abdelkader
Kouzou, Pr. Abdellah
Mots-clés: Gradient Boosted Machine
Independent Component Analysis (ICA)
Random Forest
Remaining Useful Life (RUL)
Turbo Fan Engine
Date de publication: 2023
Editeur: Institute of Electrical and Electronics Engineers Inc
Collection/Numéro: 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 2023;pp. 477-484
Résumé: This paper takes an approach to the determination on the Remaining Useful Life (RUL) on a real-life turbo engine model selected from a set of data provided within the public domain for research purposes from the Prognostics Data Repository of NASA. The RUL analysis algorithm uses Independent Component Analysis for data dimensionality reduction and data processing simplicity due to the large number of involved sensors, then a model is trained to predict the remaining useful life for the turbo engine using Random Forest (RF) and Gradient Boosted Machine Algorithms (GBMA). The final RUL data is compared to the real RUL vs. time provided within the original data date for algorithm validation.
URI/URL: 10.1109/SSD58187.2023.10411295
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13651
https://ieeexplore.ieee.org/document/10411295
ISBN: 979-835033256-8
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Turbofan_Engine_RUL_Prediction_using_ICA_and_Machine_Learning_Algorithms.pdf1,69 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires