DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13699

Titre: Existence, uniqueness and abstract approach to hyers–ulam stability in banach lattice algebras and an application
Auteur(s): Benkaci-Ali, Nadir
Mots-clés: Abstract equation
Fixed point
Hyers–Ulam stability
Date de publication: 2023
Editeur: Rocky Mountain Mathematics Consortium
Collection/Numéro: Journal of Integral Equations and Applications/ Vol. 35, N°3(2023);pp. 259 - 276
Résumé: The abstract equation of the form u = Ku · L(Fu) is investigated in this paper. By applying a fixed point theorem for the product of operators K and A = L(F) defined on a Banach lattice algebra E, we obtain existence and uniqueness results of fixed points of the operator T = K · A. Moreover, we state a sufficient condition on the spectral radius of a majorant linear mapping of L under which the equation u = T u has the L-Hyers–Ulam stability. As an application, the obtained results are used to prove existence and uniqueness of solutions and Hyers–Ulam stability of a (p1, p2,…, pn)-Laplacian hybrid fractional differential system. An example is also constructed to illustrate the main results. This work contains many new ideas, and gives a unified approach applicable to several types of differential and integral equations.
URI/URL: https://projecteuclid.org/journals/journal-of-integral-equations-and-applications/volume-35/issue-3/EXISTENCE-UNIQUENESS-AND-ABSTRACT-APPROACH-TO-HYERSULAM-STABILITY-IN-BANACH/10.1216/jie.2023.35.259.short
10.1216/jie.2023.35.259
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13699
ISSN: 08973962
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires