DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13745

Titre: Improving kernel PCA-based algorithm for fault detection in nonlinear industrial process through fractal dimension
Auteur(s): Kaib, Mohammed Tahar Habib
Kouadri, Abdelmalek
Harkat, Mohamed Faouzi
Bensmail, Abderazak
Mansouri, Majdi
Mots-clés: Principal component analysis (PCA)
Kernel PCA
Reduced KPCA
Fractal dimension
Correlation dimension
Chaos theory
Fault detection
Chemical process
Tennessee eastman process
Cement rotary kiln
Process safety
Date de publication: 2023
Editeur: Institution of Chemical Engineers
Collection/Numéro: Process Safety and Environmental Protection/ Vol. 179 (2023);PP. 525 - 536
Résumé: Principal Component Analysis (PCA) is a widely used technique for fault detection and diagnosis. PCA works well when the data set has linear characteristics. However, most industrial processes have nonlinear characteristics in their data. Kernel PCA (KPCA) is an alternative solution for such types of data sets. This solution doesn’t come without a cost since one of KPCA’s disadvantages is a large number of observations which results in more occupied storage space and more execution time than the PCA technique. Furthermore, if the data is too large it may minimize the monitoring performance of the KPCA model. Reduced KPCA (RKPCA) is a solution for the conventional KPCA limitations. Firstly, RKPCA can deal with nonlinear characteristics without crucial problems because it is based on the KPCA algorithm with a data reduction part where it keeps most of the data’s infor- mation. Thus, by reducing the number of observations RKPCA reduces the occupied storage space and execution time while preserving tolerable monitoring performance. The proposed RKPCA algorithm consists of two parts. First, the large-sized training data set is reduced using the fractal dimension technique (correlation dimension). Afterward, the KPCA model is developed through the obtained reduced training data set. The proposed scheme is applied to the Tennessee Eastman Process and the Cement Plant Rotary Kiln data sets to evaluate its performance in comparison with other algorithms.
URI/URL: https://www.sciencedirect.com/science/article/abs/pii/S0957582023008212
https://doi.org/10.1016/j.psep.2023.09.010
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13745
ISSN: 0957-5820
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Improving kernel PCA-based algorithm for fault detection in nonlinear industrial process through fractal dimension.pdf6,21 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires