Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13845
|
Titre: | Optimal design of wireless power transfer coils for biomedical implants using machine learning and meta-heuristic algorithms |
Auteur(s): | Bennia, Fatima Boudouda, Aimad Nafa, Fares |
Mots-clés: | Biomedical implants Coil design Meta-heuristic algorithms Neural network Wireless power transfer |
Date de publication: | 2024 |
Editeur: | Springer Nature |
Collection/Numéro: | Electrical Engineering (2024); |
Résumé: | The classical methods for optimizing wireless power transfer (WPT) systems using mathematical equations or finite element methods can be time-consuming and may only sometimes yield optimal designs. In order to overcome this challenge, this paper introduces a novel approach integrating machine learning techniques with meta-heuristic methods to design and optimize a miniaturized, high-efficiency WPT receiving coil for biomedical applications. The objective is to achieve dimensions below 20 mm, a depth of 30 mm within the tissue, and a frequency of 13.56 MHz. Our approach leverages a neural network (NN) model to predict efficiency based on geometric coil parameters, eliminating the need for complex equations. The NN was trained on a dataset generated via finite element method simulations. We employ two meta-heuristic algorithms, the genetic algorithm and the coyote optimization method, to find optimal parameters that maximize efficiency. Our NN model demonstrates exceptional accuracy, exceeding 97%. Furthermore, the proposed WPT coil design approach enhances transfer efficiency by up to 76%, significantly reducing computation time compared to classical methods. Finally, we validate our results using finite element simulation with Ansys Maxwell 3D. |
URI/URL: | https://link.springer.com/article/10.1007/s00202-024-02345-4 https://doi.org/10.1007/s00202-024-02345-4 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13845 |
ISSN: | 0948-7921 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|