DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13934

Titre: Artificial Intelligence Technique in earth sciences for porosity prediction in shaly petroleum reservoir from geophysical well-logs data. Application to Hassi R'mel field, Algeria
Auteur(s): Aliouane, Leila
Ouadfeul, Sid-ali
Mots-clés: Machine learning
Earth sciences
Porosity prediction
Geophysical well-logs
Date de publication: 2024
Editeur: MEACSE Publication
Collection/Numéro: International Journal of Computing/Vol. 10, N° 1(2024);pp. 1-6
Résumé: Machine learning techniques are becoming very popular in earth sciences, mainly in petroleum exploration and exploitation. Reservoir characterization using geophysical well-logs data analysis is commonly conducted and plays a central role in formation evaluation in petroleum domain. The most petrophysical parameters that describe the reservoir are the porosity, the permeability and the water saturation where the porosity is the main key. Using conventional methods, the estimation of the porosity is very difficult, mainly in shaly reservoirs where the presence of clay affects considerably, the porosity and the permeability. For that, we propose to accurately predict the porosity from geophysical recordings crossed the formation of wells using machine learning methods such as multi-layer neural network. The input layer are constituted by the petrophysical well-logs data and the output layer presented by one neuron corresponding to the predicted porosity. The training step of neural network machine (NNM) is processed using core data (CORPOR) by minimizing the root mean square error using Radial Basis Function algorithm (RBF). Once trained, the model is then applied to the target wells to predict porosity (PORRBF). The predicted porosity match the core values with good accuracy. This approach provides significantly a robust computation method and reduces dependency on prior domain knowledge
URI/URL: http://www.meacse.org/ijcar/archives/158.pdf
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/13934
ISSN: 2305-9184
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Artificial Intelligence Technique in earth sciences for porosity prediction in shaly petroleum reservoir from geophysical well-logs data. Application to Hassi R'mel field, Algeria.pdf930,44 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires