Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14131
|
Titre: | Vision Transformer Model for Gastrointestinal Tract Diseases Classification from WCE Images |
Auteur(s): | Bella, Faiza Berrichi, Ali Moussaoui, Abdelouahab |
Mots-clés: | Gastrointestinal tract diseases Gastroenterology Colon Wireless capsule endoscopy WCE Images Vision transformer Pre-trained models Convolutional neural network |
Date de publication: | 2024 |
Editeur: | Institute of Electrical and Electronics Engineers |
Collection/Numéro: | 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), Biskra, Algeria, 2024;PP. pp. 1-7 |
Résumé: | Accurate disease classification utilizing endoscopic images indeed poses a significant challenge within the field of gastroenterology. This research introduces a methodology for assisting medical diagnostic procedures and detecting gastrointestinal (GI) tract diseases by categorizing features extracted from endoscopic images using Vision Transformer (ViT) models. We propose three ViT-inspired models for classifying GI tract diseases using colon images acquired through wireless capsule endoscopy (WCE). The highest achieved accuracy among our models is 97.83%. We conducted a comparative analysis with three pre-trained CNN (Convolutional Neural Network) models namely, Xception, DenseNet121, and MobileNet, alongside recent research papers to validate our findings. |
URI/URL: | https://ieeexplore.ieee.org/document/10536754 10.1109/ISPA59904.2024.10536754 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14131 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|