DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14168

Titre: Intelligent multi-fault identification and classification of defective bearings in gearbox
Auteur(s): Damou, Ali
Ratni, Azeddine
Benazzouz, Djamel
Mots-clés: Bearing diagnosis
Fault classification
Gearbox
Machine learning
Signal processing
Date de publication: 2024
Editeur: SAGE Publications Inc.
Collection/Numéro: Advances in Mechanical Engineering/ Vol. 16,N° 4 (2024);pp. 1-16
Résumé: Bearing faults in gearbox systems pose critical challenges to industrial operations, needing advanced diagnostic techniques for timely and accurate identification. In this paper, we propose a new hybrid method for automated classification and identification of defective bearings in gearbox systems with identical rotating frequencies. The method successfully segmented the signals and captured specific frequency components for deeper analysis employing three distinct signal processing approaches, ensemble empirical mode decomposition EEMD, wavelet packet transform WPT, empirical wavelet transform EWT. By decomposing vibration signals into discrete frequency bands using WPT, relevant features were extracted from each sub-band in the time domain, enabling the capturing of distinct fault characteristics across various frequency ranges. This extensive set of features is then served as inputs for machine learning algorithm in order to identify and classify the defective bearing in the gearbox system. Random forest RF, decision tree DT, ensemble tree ET classifiers showcased a notable accuracy in classifying different fault types and their localizations. The new approach shows the high performance of the diagnostic gearbox with a minimum of accuracy (Min = 99.95 %) and higher stability (standard deviation = 0.1).
URI/URL: https://journals.sagepub.com/doi/10.1177/16878132241246673
https://doi.org/10.1177/16878132241246673
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14168
ISSN: 1687-8132
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
damou-et-al-2024-intelligent-multi-fault-identification-and-classification-of-defective-bearings-in-gearbox.pdf6,43 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires