Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14242
|
Titre: | New MPPT hybrid controller based on genetic algorithms and particle swarm optimization for photovoltaic systems |
Auteur(s): | Mammeri, Elhachemi Ahriche, A. Necaibia, A. Bouraiou, A. |
Mots-clés: | Photovoltaic MPPT Techniques Metaheuristic algorithms Partial shading conditions Particle swarm optimization |
Date de publication: | 2023 |
Collection/Numéro: | International journal of circuits, systems and signal processing/ Vol. 17; |
Résumé: | Traditional Maximum Power Point
Tracking (MPPT) techniques are unable to reach
high performance in photovoltaic (PV) system
under partial shading conditions because of the
multi-peaks present in the Power-Voltage curve.
For that, particle Swarm Optimization (PSO)
and genetic algorithms (GA) have been combined
in recent years. However, these algorithms
demonstrate some drawbacks in tracking accuracy
and convergence rates, which impair control
performance. In this paper, a new controller
based on hybridization of PSO and GA is introduced
to track the global maximum power point
(GMPP). The proposed algorithm (HPGA) increases
the balance rate between exploration and
exploitation due to the cascade design of GA and
PSO. Thus, the GMPP tracking of both algorithms
will be improved. Simulations are carried
out based on ISOFOTON-75W PV modules
to prove the high performance of the proposed
algorithm. From the obtained results, we conclude
that HPGA shows fast convergence and
very good tracking accuracy of GMPP in PV system
even under different shading patterns. |
URI/URL: | DOI:10.46300/9106.2023.17.10 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14242 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|