Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14257
|
Titre: | Algebraic-based primal interior-point algorithms for stochastic infinity norm optimization |
Auteur(s): | Alzalg, Baha Tamsaouete, Karima |
Mots-clés: | Jordan algebras Infinity norm optimization Stochastic programming Interior-point methods Polynomial-time complexity |
Date de publication: | 2024 |
Editeur: | Azarbaijan Shahid Madani University |
Collection/Numéro: | Communications in Combinatorics and Optimization/ Vol. 9, N°4;PP. 655 - 692 |
Résumé: | We study the two-stage stochastic infinity norm optimization problem with recourse based on the Jordan algebra. First, we explore and develop the Jordan algebra structure of the infinity norm cone, and utilize it to compute the derivatives of the barrier recourse functions. Then, we prove that the barrier recourse functions and the composite barrier functions for this optimization problem are self-concordant families with reference to barrier parameters. These findings are used to develop interior-point algorithms based on primal decomposition for this class of stochastic programming problems. Our complexity results for the short- and long-step algorithms show that the dominant complexity terms are linear in the rank of the underlying cone. Despite the asymmetry of the infinity norm cone, we also show that the obtained complexity results match (in terms of rank) the best known results in the literature for other well-studied stochastic symmetric cone programs. Finally, we demonstrate the efficiency of the proposed algorithm by presenting some numerical experiments on both stochastic uniform facility location problems and randomly-generated problems. |
URI/URL: | https://comb-opt.azaruniv.ac.ir/article_14581.html https://doi.org/10.22049/cco.2023.28256.1492 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14257 |
ISSN: | 2538-2128 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|