DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14291

Titre: Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model
Auteur(s): Bedda, Kahina
Mots-clés: Artificial neural network
Diesel fuel
Flash point
Gas oil
Kerosene
Multilayer perceptron
Prediction accuracy
Date de publication: 2024
Editeur: Pleiades Publishing
Collection/Numéro: Petroleum Chemistry(2024 );
Résumé: An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.
URI/URL: https://link.springer.com/article/10.1134/S0965544124040066
https://doi.org/10.1134/S0965544124040066
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14291
ISSN: 0965-5441
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires