DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14304

Titre: Automatic fault tracking from 3D seismic data using the 2D Continuous Wavelet Transform combined with a Convolutional Neural Network
Auteur(s): Ouadfeul, Sid Ali
Aliouane, Leila
Mots-clés: Seismic cube
Time slices
Variance attribute
Date de publication: 2024
Editeur: Istituto Nazionale di Oceanografia e di Geofisica Sperimentale
Collection/Numéro: Bulletin of Geophysics and Oceanography/ Vol. 65, N° 3(2024);PP. 377 - 384
Résumé: The aim of this work is to propose a new technique for automatic fault tracking from 3D seismic data using the 2D Continuous Wavelet Transform (CWT) method combined with artificial intelligence. Time slices of the variance attribute, derived from the 3D seismic data and chosen by the user, are analysed using the 2D CWT with the 2D Mexican Hat as an analysing wavelet, and the maxima of the modulus of the 2D CWT are mapped for the full range of scales. The ensemble of mapped maxima for the set of time slices is filtered using a Convolutional Neural Network machine. Machine training is performed with a supervised mode using the manually tracked faults as a desired output. Application to real data shows the efficiency and robustness of the proposed method, which can greatly help seismic interpreters in avoiding manual fault tracking, a difficult and time-consuming task.
URI/URL: https://bgo.ogs.it/issues/2024-vol-65-3/automatic-fault-tracking-3d-seismic-data-using-2d-continuous-wavelet-transform
DOI 10.4430/bgo00451
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14304
ISSN: 2785-339X
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Automatic fault tracking from 3D seismic data using the 2D Continuous Wavelet Transform combined with a Convolutional Neural Net.pdf2,15 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires