DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14313

Titre: Multi-fault bearing diagnosis under time-varying conditions using Empirical Wavelet Transform, Gaussian mixture model, and Random Forest classifier
Auteur(s): Imane, Moussaoui
Rahmoune, Chemseddine
Zair, Moahmed
Benazzouz, Djamel
Mots-clés: Bearing diagnosis
Empirical Wavelet Transform
Fault classification
Feature selection
Gaussian mixture model
Vibration signatures
Date de publication: 2024
Editeur: SAGE Publications Inc.
Collection/Numéro: Advances in Mechanical Engineering/ Vol. 16, N° 8(2024);pp. 1-12
Résumé: Bearing faults can cause heavy disruptions in machinery operation, which is why their reliable diagnosis is crucial. While current research into bearing fault analysis focuses on analyzing vibration data under constant working conditions, it is important to consider the challenges that arise when machinery runs at variable speeds, which is usually the case. This article proposes a multistage classifier for diagnosing bearings under time-variable conditions. We validate our method using vibration signals from five bearing health states, including a combined fault case. Our approach involves decomposing the signals using Empirical Wavelet Transform and computing temporal and frequency domain attributes. We use the Expectation-Maximization Gaussian mixture model for optimization concerns to identify relevant parameters and train the Random Forest classifier with the selected features. Our method, evaluated using the Polygon Area Metric, has demonstrated high effectiveness in diagnosing bearings under time-variable conditions. Our approach offers a promising solution that efficiently addresses speed variability and combined fault recognition issues.
URI/URL: https://journals.sagepub.com/doi/10.1177/16878132241275787
https://doi.org/10.1177/16878132241275787
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14313
ISSN: 1687-8132
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
imane-et-al-2024-multi-fault-bearing-diagnosis-under-time-varying-conditions-using-empirical-wavelet-transform-gaussian.pdf1,17 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires