DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14335

Titre: HTTP Flood DOS Attack Detection on Big Data Using Data Mining
Auteur(s): Haddadi, Mohamed
Khiat, Abdelhamid
Abidi, Yasmina
Derradji, Yaakoub
Mots-clés: Data preprocessing
HTTP flood DoS attack
Http_csic_2010_full dataset
Tanagra tool
Weka tool
Date de publication: 2024
Editeur: Springer Nature
Collection/Numéro: 13th International Conference on Information Systems and Advanced Technologies “ICISAT 2023”. ICISAT 2023. Lecture Notes in Networks and Systems, vol 981. Springer, Cham(2024);pp. 37 - 49
Résumé: Nowadays, increasing use of Internet connection, security becomes a huge challenge for individuals as well as governments and organizations. Therefore, in the last decade, the world is moving towards green computing in the purpose either to store energy or to decrease operational costs. So, this new technology uses web servers to provide web applications to end user. Generally, these web servers become unavailable because of HTTP flood DoS attack. This paper applied data mining techniques such as WEKA and TANAGRA tools for data preprocessing in the aim to get a consistent data in one hand, and for classifying the traffic in normal behavior or anomaly using like J48, Random tree, SMO, Naïve bayes, IBK, and combined classifier in the other hand. For this aim, a well-known big data set is used which called http_csic_2010_full dataset. Results show that the two data mining tools are well close with all the classifiers, just MLP in WEKA, and CVM in TANAGRA they didn’t perform well in terms of detection accuracy.
URI/URL: https://link.springer.com/chapter/10.1007/978-3-031-60591-8_4
https://doi.org/10.1007/978-3-031-60591-8_4
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14335
ISBN: 978-303160590-1
ISSN: 2367-3370
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires