Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14630
|
Titre: | Using Machine Learning Algorithms for the Analysis and Modeling of the Rheological Properties of Algerian Crude Oils |
Auteur(s): | Souas, Farid Oulebsir, Rafik |
Mots-clés: | Crude oil Decision trees Machine learning Rheology Temperature Viscosity |
Date de publication: | 2024 |
Editeur: | Taylor and Francis Ltd. |
Collection/Numéro: | Journal of Macromolecular Science, Part B: Physics (2024); |
Résumé: | Our research described in this report investigated the rheological behavior of crude oils from the Tin Fouye Tabankort oil field in Southern Algeria, focusing on their viscosity under varying temperatures (10 °C–50 °C). The results show that the oils exhibited non-Newtonian shear-thinning behavior at low shear rates, with the viscosity decreasing as the temperature was increased. At higher shear rates, the Herschel–Bulkley model accurately described the oils’ transition to Newtonian behavior. Machine learning models, including CatBoost, LightGBM, and XGBoost, were trained on the experimental data to predict the viscosity, with CatBoost and XGBoost showing superior performance. We suggest these findings are valuable for improving the efficiency of oil transportation and processing. |
URI/URL: | https://www.tandfonline.com/doi/full/10.1080/00222348.2024.2420456?src= https://doi.org/10.1080/00222348.2024.2420456 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14630 |
ISSN: | 0022-2348 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|