DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14630

Titre: Using Machine Learning Algorithms for the Analysis and Modeling of the Rheological Properties of Algerian Crude Oils
Auteur(s): Souas, Farid
Oulebsir, Rafik
Mots-clés: Crude oil
Decision trees
Machine learning
Rheology
Temperature
Viscosity
Date de publication: 2024
Editeur: Taylor and Francis Ltd.
Collection/Numéro: Journal of Macromolecular Science, Part B: Physics (2024);
Résumé: Our research described in this report investigated the rheological behavior of crude oils from the Tin Fouye Tabankort oil field in Southern Algeria, focusing on their viscosity under varying temperatures (10 °C–50 °C). The results show that the oils exhibited non-Newtonian shear-thinning behavior at low shear rates, with the viscosity decreasing as the temperature was increased. At higher shear rates, the Herschel–Bulkley model accurately described the oils’ transition to Newtonian behavior. Machine learning models, including CatBoost, LightGBM, and XGBoost, were trained on the experimental data to predict the viscosity, with CatBoost and XGBoost showing superior performance. We suggest these findings are valuable for improving the efficiency of oil transportation and processing.
URI/URL: https://www.tandfonline.com/doi/full/10.1080/00222348.2024.2420456?src=
https://doi.org/10.1080/00222348.2024.2420456
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14630
ISSN: 0022-2348
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires