Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Faculté des Hydrocarbures et de la Chimie >
Automatisation des procédés industriels et électrification >
Commande automatique >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14837
|
Titre: | Deep Q-Learning and Double Deep Q-Learning for optimizing transitions within deterministic environments |
Auteur(s): | Gherbia, Oussama Kohil, Yasser Lachekhab (Kahoul), Fadhila (Promoteur) |
Mots-clés: | Procédés de fabrication : Automatisation Commande automatique Apprentissage profond Apprentissage automatique Algorithmes Réseau neuronal artificiel |
Date de publication: | 2024 |
Editeur: | Université M’Hamed Bougara Boumerdès : Faculté des Hydrocarbures et de la Chimie |
Résumé: | The Development of intelligent decision-making algorithms has become important for technological growth in the era of artificial intelligence (AI), machine learning, and deep learning. These sectors have not only transformed whole businesses, but they have also completely changed the way we use technology every day. Reinforcement learning, a subfield of machine learning that focuses on teaching agents to make logical choices in dynamic environments. This document offers a deep review of reinforcement learning, with special attention paid to three essential algorithms: Q-learning , deep Q-learning, and double deep Q-learning. Each of these algorithms offers ever more advanced methods for handling challenging issues in a variety of fields, matting an important turning point in the pursuit of intelligent decision-making. |
Description: | 120 p. : ill. ; 30 cm |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14837 |
Collection(s) : | Commande automatique
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|