DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14896

Titre: Offline Arabic handwritten character recognition: from conventional machine learning system to deep learning approaches
Auteur(s): Faouci, Soumia
Gaceb, Djamel
Haddad, Mohammed
Mots-clés: Deep learning
DL
Convolutional neural network
Arabic handwritten
CNN
Character recognition
Machine learning
Support vector machines
Date de publication: 2022
Collection/Numéro: International Journal of Computational Science and Engineering / Vol. 25, N° 4( 2022);pp. 385-397
Résumé: Researchers have made great strides in the area of Arabic handwritten character recognition in the last decades especially with the fast development of deep learning algorithms. The characteristics of Arabic manuscript text pose several problems for a recognition system. This paper presents a conventional machine learning system based on the extraction of a set of preselected features and an SVM classifier. In the second part, a simplified convolutional neural network (CNN) model is proposed, which is compared to six other CNN models based on the pre-trained architectures. The suggested methods were tested using three databases: two versions of the OIHACDB dataset and the AIA9K dataset. The experimental results show that the proposed CNN model obtained promising results, as it is able to recognise 94.7%, 98.3%, and 95.6% of the test set of the three databases OIHACDB-28, OIHACDB-40, and AIA9K, respectively.
URI/URL: https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2022.124562
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/14896
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires