DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15252

Titre: Design and implementation of spiking neural networks on FPGA for event-based spatio-temporal applications.
Auteur(s): Boumerzoug, Nadhir
Zerrari, Dhia Elhak
Cherifi, Dalila (Supervisor)
Mots-clés: Spiking neural networks
Spatio-Temporal pattern
Date de publication: 2024
Editeur: Université M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electronique
Résumé: Inspired by the intricacies of real biological neural systems, Spiking Neural Networks (SNNs) represent an advanced type of artificia lneura lnetwork .SNN soperat ewith discrete spikes, closely mimicking the way neurons communicate in the human brain. This unique method of information processing not only enhances the computational efficien cy ofSN Nsb utal soope ns upn ewpossibiliti esf ordevelopi nglow-pow erneural network systems. In this work, we proposed a generic hardware design of an SNN based on Field-Programmable Gate Arrays (FPGA). The proposed design was implemented and tested with the event-based benchmark dataset “Neuromorphic-MNIST” and managed to achieve a low power consumption and latency, while requiring very minimal hardware resources, all this for an evaluated accuracy.
Description: 63 p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15252
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
master_report_VF_SNN_on_FPGA.pdf7,03 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires