DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15297

Affichage complet

Élément Dublin CoreValeurLangue
dc.contributor.authorBettahar, Mohammed Nadir-
dc.contributor.authorTouzout, Walid ( Supervisor)-
dc.date.accessioned2025-05-08T08:10:54Z-
dc.date.available2025-05-08T08:10:54Z-
dc.date.issued2024-
dc.identifier.urihttp://dlibrary.univ-boumerdes.dz:8080/handle/123456789/15297-
dc.description80 p.en_US
dc.description.abstractThis project delves into the application of deep learning for action detection, with a specifi cfocu so nidentifyin gshopliftin gbehavior si nretai lenvironments. Th egrowing need for automated surveillance systems that can efficient lya ndaccurate lydetect suspicious activities has motivated this work. Shoplifting action detection is the process of identifying and localizing shoplifting activities in a video by findin gbot hwhere and when an action occurs within a video clip and determining what action is being performed. A key challenge lies in preparing a dataset that reflect sth ecomplexity of real-world scenarios, which was addressed by employing semi-supervised learning techniques. The use of You Only Watch Once version 9 (YOLOv9) object detection model,its tracking function, was instrumental in the automation of labeling and tracking objects within the shoplifting video dataset, ensuring a reliable foundation for action detection. To evaluate the effectivenes so fth esystem ,th eYo uOnl yWatc hOnc eversio n2 (YOWOv2) model was used, conducting comprehensive training and testing across a variety of shoplifting situations. This allowed for a detailed assessment of the model’s ability to recognize and generalize diverse shoplifting actions, even in challenging environments. The results show that the models can detect suspicious behavior, offerin ga promising tool for improving retail security. This work contributes to the broader field of shoplifting detection by providing insights into how deep learning techniques can enhance real-time surveillance and reduce theft in retail settings, with potential applications in other domains of anomaly detection. The YOWOv2-Medium-16-frames model gave the best performance with 54.74% frame mean average precision and 42.67% in video mean average precision.en_US
dc.language.isoenen_US
dc.publisherUniversité M’hamed Bougara de Boumerdes : Institut de Genie Electrique et Electroniqueen_US
dc.subjectDeep learningen_US
dc.subjectShoplifting detectionen_US
dc.titleAction detection using deep learning shoplifting detection frameworken_US
dc.typeThesisen_US
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
bettahar Mohammed.pdf5,64 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires