Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/249
|
Titre: | Choice of input data type of artificial neural network to detect faults in alternative current systems |
Auteur(s): | Benslimane, T. Chetate, Boukhmis |
Mots-clés: | Diagnosis Learning Data type AC voltage and current RMS value Instantaneous value Average value |
Date de publication: | 2006 |
Collection/Numéro: | American Journal of Applied Sciences/ Vol.3, N°8 (2006);p.p. 1979-1983 |
Résumé: | This paper present a study on different input data types of ANN used to detect faults such as overvoltage in AC systems (AC network , induction motor). The input data of ANN are AC voltage and current. In no fault condition, voltage and current are sinusoidal. The input data of the ANN may be the instantaneous values of voltage and current, their RMS values or their average values after been rectified. In this paper we presented different characteristics of each one of these data. A digital software C++ simulation program was developed and simulation results were presented |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/249 |
ISSN: | 1546-9239 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|