DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/249

Titre: Choice of input data type of artificial neural network to detect faults in alternative current systems
Auteur(s): Benslimane, T.
Chetate, Boukhmis
Mots-clés: Diagnosis
Learning Data type
AC voltage and current
RMS value
Instantaneous value
Average value
Date de publication: 2006
Collection/Numéro: American Journal of Applied Sciences/ Vol.3, N°8 (2006);p.p. 1979-1983
Résumé: This paper present a study on different input data types of ANN used to detect faults such as overvoltage in AC systems (AC network , induction motor). The input data of ANN are AC voltage and current. In no fault condition, voltage and current are sinusoidal. The input data of the ANN may be the instantaneous values of voltage and current, their RMS values or their average values after been rectified. In this paper we presented different characteristics of each one of these data. A digital software C++ simulation program was developed and simulation results were presented
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/249
ISSN: 1546-9239
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Choice of input data type of artificial neural network to detect faults in alternative current systems.pdf87,16 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires