Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/3182
|
Titre: | Breast cancer response prediction in neoadjuvant chemotherapy treatment based on texture analysis |
Auteur(s): | Ammar, Mohammed Mahmoudi, Saïd Stylianos, Drisis |
Mots-clés: | Breast cancer Response Prediction Texture Analysis Neoadjuvant Chemotherapy |
Date de publication: | 2016 |
Editeur: | Elsevier |
Collection/Numéro: | Procedia Computer Science/ 100 ( 2016 );pp. 812-817 |
Résumé: | MRI modality is one of the most usual techniques used for diagnosis and treatment planning of breast cancer. The aim of this study
is to prove that texture based feature techniques such as co-occurrence matrix features extracted from MRI images can be used to
quantify response of tumor treatment. To this aim, we use a dataset composed of two breast MRI examinations for 9 patients. Three
of them were responders and six non responders. The first exam was achieved before the initiation of the treatment (baseline). The
later one was done after the first cycle of the chemo treatment (control). A set of selected texture parameters have been selected
and calculated for each exam. These selected parameters are: Cluster Shade, dissimilarity, entropy, homogeneity. The p-values
estimated for the pathologic complete responders pCR and non pathologic complete responders pNCR patients prove that
homogeneity (P-value=0.027) and cluster shade (P-value=0.0013) are the more relevant parameters related to pathologic complete
responders pCR |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/3182 |
ISSN: | 1877-0509 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|