DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/368

Titre: Fractal analysis based on the continuous wavelet transform and lithofacies classification from well-logs data using the self-organizing map neural network
Auteur(s): Aliouane, Leila
Ouadfeul, S.
Boudella, A.
Mots-clés: Well-logs
Lithofacies
CWT
Hölder exponent
SOM
Date de publication: 2013
Editeur: Springer-Verlag
Collection/Numéro: Arab J Geosci / Vol.6 (2013);pp. 1681–1691
Résumé: The main goal of this paper is to show that the fractal analysis based on the continuous wavelet transform is not able to improve lithofacies classification using the self-organizing map (SOM) neural network model from well-logs data. The proposed idea consists to inject many inputs in SOM neural network machines and to choose the best map. These inputs are: data set 1: the five raw well-logs data which are: the gamma ray, density, neutron porosity, photoelectric absorption coefficient and sonic well-log; data set 2: the estimated Hölder exponents using the continuous wavelet transform of the data set 1; data set 3: data set 1 and the three radioactive elements concentrations; data set 4: the estimated Hölder exponents of the data set 1 and the Hölder exponents of the radioactive elements concentrations; data set 5: the estimated Hölder exponents of the data set 1 and the three radioactive elements concentrations logs. Application of the proposed idea at two boreholes located in the Algerian Sahara shows that the Hölder exponents estimated with the continuous wavelet transform as an input of the SOM neural network are not able to give geological details. However, the raw well-logs as an input give more details and precision especially when they are enhanced with the natural gamma ray spectrometry data
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/368
ISSN: 1866-7538
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Fractal analysis based on the continuous wavelet transform and lithofacies classification from well-logs data using the self-organizing map neural network.pdf90,83 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires