DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5315

Titre: Gear fault feature extraction and classification of singular value decomposition based on Hilbert empirical wavelet transform
Auteur(s): Rahmoune, Chemseddine
Merainani, Boualem
Benazzouz, Djamel
Fedala, Semchedine
Mots-clés: Gearbox
Vibration signals
Feature extraction
Fault classification
Hilbert Empirical Wavelet Transform (HEWT)
Singular Value Decomposition (SVD)
Date de publication: 2018
Editeur: JVE International
Collection/Numéro: Journal of Vibroengineering/ Vol.20, N°4 (2018) ;pp. 1603-1618
Résumé: Vibration signal of gearbox systems carries the important dynamic information for fault diagnosis. However, vibration signals always show non stationary behavior and overwhelmed by a large amount of noise make this task challenging in many cases. Thus, a new fault diagnosis method combining the Hilbert empirical wavelet transform (HEWT), the singular value decomposition (SVD) and Elman neural network is proposed in this paper. Vibration signals of normal gear, gear with tooth root crack, gear with chipped tooth in width, gear with chipped tooth in length, gear with missing tooth and gear with general surface wear are collected in different speed and load conditions. HEWT, a new self-adaptive time-frequency analysis, was applied to the vibration signals to obtain the instantaneous amplitude matrices. Singular value vectors, as the fault feature vectors were then acquired by applying the SVD. Last, the Elman neural network was used for automatic gearbox fault identification and classification. Through experimental results, it was concluded that the proposed method can accurately extract and classify the gear fault features under variable conditions. Moreover, the performance of the proposed HEWT-SVD method has an advantage over that of Hilbert-Huang transform (HHT)-SVD, local mean decomposition (LMD)-SVD or wavelet packet transform (WPT)-PCA for feature extraction
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5315
ISSN: 1392-8716
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Rahmoune Chemseddine.pdf2,56 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires