DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5861

Titre: A stochastic multi-agent approach for medical-image segmentation: Application to tumor segmentation in brain MR images
Auteur(s): Bennai, Mohamed Tahar
Guessoum, Zahia
Mazouzi, Smaine
Cormier, Stéphane
Mezghiche, Mohamed
Mots-clés: 3D medical images
Segmentation
Multi-agent systems
Region growing
Date de publication: 2020
Editeur: ELSEVIER
Collection/Numéro: Artificial Intelligence in Medicine;
Résumé: According to functional or anatomical modalities, medical imaging provides a visual representation of complex structures or activities in the human body. One of the most common processing methods applied to those images is segmentation, in which an image is divided into a set of regions of interest. Human anatomical complexity and medical image acquisition artifacts make segmentation of medical images very complex. Thus, several solutions have been proposed to automate image segmentation. However, most existing solutions use prior knowledge and/or require strong interaction with the user. In this paper, we propose a multi-agent approach for the segmentation of 3D medical images. This approach is based on a set of autonomous, interactive agents that use a modified region growing algorithm and cooperate to segment a 3D image. The first organization of agents allows region seed placement and region growing. In a second organization, agent interaction and collaboration allow segmentation refinement by merging the over-segmented regions. Experiments are conducted on magnetic resonance images of healthy and pathological brains. The obtained results are promising and demonstrate the efficiency of our method.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5861
ISSN: Volume 110, November 2020, 101980
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires