Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5916
|
Titre: | Bearing faults classification under various operation modes using time domain features, singular value decomposition, and fuzzy logic system |
Auteur(s): | Gougam, Fawzi Chemseddine, Rahmoune Benazzouz, Djamel Benaggoune, Khaled Zerhouni, Noureddine |
Mots-clés: | Faults prognosis feature extraction classical features bearing faults remaining useful life artificial intelligence machine learning |
Date de publication: | 2020 |
Editeur: | SAGE |
Résumé: | Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation. |
URI/URL: | https://doi.org/10.1177/0954406220976154 https://journals.sagepub.com/doi/full/10.1177/0954406220976154 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5916 |
ISSN: | ISSN: 0954-4062 Online ISSN: 2041-2983 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|