DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5916

Titre: Bearing faults classification under various operation modes using time domain features, singular value decomposition, and fuzzy logic system
Auteur(s): Gougam, Fawzi
Chemseddine, Rahmoune
Benazzouz, Djamel
Benaggoune, Khaled
Zerhouni, Noureddine
Mots-clés: Faults prognosis
feature extraction
classical features
bearing faults
remaining useful life
artificial intelligence
machine learning
Date de publication: 2020
Editeur: SAGE
Résumé: Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation.
URI/URL: https://doi.org/10.1177/0954406220976154
https://journals.sagepub.com/doi/full/10.1177/0954406220976154
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5916
ISSN: ISSN: 0954-4062
Online ISSN: 2041-2983
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires