Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5940
|
Titre: | On The Block Decomposition and Spectral Factors of λ -Matrices |
Auteur(s): | Bekhiti, Belkacem Dahimene, Abdelhakim Hariche, Kamel Fragulis, George F. |
Mots-clés: | Block roots Solvents Spectral factors Block-Q.D algorithm Block-Horner’s algorithm Matrix polynomial |
Date de publication: | 2018 |
Editeur: | Arxiv |
Collection/Numéro: | Control and Cybernetics, 49(1);pp. 41-76 |
Résumé: | In this paper we factorize matrix polynomials into a complete set of spectral factors using a new design algorithm and we provide a complete set of block roots (solvents). The procedure is an extension of the (scalar) Horner method for the computation of the block roots of matrix polynomials. The Block-Horner method brings an iterative nature, faster convergence, nested programmable scheme, needless of any prior knowledge of the matrix polynomial. In order to avoid the initial guess method we proposed a combination of two computational procedures. First we start giving the right Block-QD (Quotient Difference) algorithm for spectral decomposition and matrix polynomial factorization. Then the construction of new block Horner algorithm for extracting the complete set of spectral factors is given. |
URI/URL: | https://arxiv.org/abs/1803.10557 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/5940 |
ISSN: | 03248569 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|